Apple General Info

The Apple General Info section serves as a catch-all resource for a wide range of Apple-related information that doesn't fit within
specific categories. From tips and tricks for maximizing productivity on your Apple devices to discussions on Apple services,
accessories, and general troubleshooting guidance, this section covers it all. Stay up to date with the latest Apple announcements,
explore lesser-known features and functionalities, and find solutions to common issues you may encounter. Discover insights and
helpful advice that will enhance your overall Apple experience and make the most of your devices and services. The Apple General
Info section is your go-to destination for all things Apple beyond the scope of specific topics.

® Apple MDM

o Apple MDM Lost Mode
o Apple MDM Command History

e Adapting to Apple's TLS Server Certificate Validity Limits
e Apple App Store and Automatic Updates

e Apple Content Caching service

e Bypassing DPI for Apple Trafficin MDM Communication

e Hardware Encryption Capabilities for Apple Hardware

® macOS Sonoma /i0S 17 support in FileWave 15.1.0+

e Microsoft Enterprise SSO plug-in for Apple devices

e Understanding Similar and Identical Software Update Names in FileWave for Apple Devices

file:///tmp/knp_snappy6772d5bf961ff6.52263884.html#chapter-122
file:///tmp/knp_snappy6772d5bf961ff6.52263884.html#page-487
file:///tmp/knp_snappy6772d5bf961ff6.52263884.html#page-1001
file:///tmp/knp_snappy6772d5bf961ff6.52263884.html#page-800
file:///tmp/knp_snappy6772d5bf961ff6.52263884.html#page-609
file:///tmp/knp_snappy6772d5bf961ff6.52263884.html#page-638
file:///tmp/knp_snappy6772d5bf961ff6.52263884.html#page-786
file:///tmp/knp_snappy6772d5bf961ff6.52263884.html#page-91
file:///tmp/knp_snappy6772d5bf961ff6.52263884.html#page-767
file:///tmp/knp_snappy6772d5bf961ff6.52263884.html#page-599
file:///tmp/knp_snappy6772d5bf961ff6.52263884.html#page-639

Apple MDM

With the exception of macOS, all Apple devices are managed purely through MDM. macOS devices on the other hand, relies upon the
FileWave Client, however, when MDM enrolled, benefit from the additional features

Apple MDM

Apple MDM Lost Mode

What

Lost Mode locks devices from use until Lost Mode is disabled. This enhances the security whilst devices are in an unknown location.

Why

On occasion, users can misplace devices. To assist the protection of data and prevent anyone from using the device until relocated,
an MDM command may be sent to Lock the device.

Information

Lost Mode is enabled by setting a device into the 'Missing' Client State, via the right click contextual menu:

Wipe Device...

Client State 5 Tracked

Management Mode > Missing
Untracked
Archive
Reinstate

Show Archived clients

To disable Lost Mode, select any other Client State, Tracked or Untracked. A Model Update is required after altering the Client State
before the MDM command will be sent to the device.

@ Devices require network to receive the command to enable or disable Lost Mode.

If a device is Locked and unable to receive network due to the surrounding W-Fi networks not yet being configured, consider
connecting the device to ethernet (adaptor may be required).

Locating Devices

Whilst locked, as well as devices being unusable, additional features help locate the device

Location

After being set as Lost, location data will be sent back to the FileWave Server, where the device has a network connection. Location
may be viewed on a map from the Client Info view as well as related location data being available from Inventory Queries.

Sound

Location is all very well, but what if the device is in a bag, cupboard or similar. To further assist retrieval of the device, when in the
Lost Mode 'missing' state, an additional option will be available from the right click menu: 'Play Lost Mode Sound'. Previous set
volume is not a consideration and the device will make an audible set of tones.

https://kb.filewave.com/uploads/images/gallery/2024-10/6lwnzE3UJcqhoQm6-image.png

Apple MDM

Apple MDM Command History

What

Any Apple devices that are MDM enrolled should receive MDM Requests. Each Client Info lists the requests for that device.

Why

MDM Command History exists to display all requests queued and sent to devices, along with the result of those requests; additionally
showing if the request was designed for the User of the device or the System

When referring to Users and MDM, Apple allow for any amount of directory users to be managed, but only one local user is
considered to be managed. This is the first local user to log into the device after enrolment. System requests impact all users.

The Request Types include:

Inventory
Profile instals and uninstalls
VPP App instals and uninstalls

L[]
[]
L[]
e Commands, e.g. erasing a device, renaming the device, etc.

Information

Opening the Client Info for an Apple MDM enrolled device and selecting the Command History tab should show something similar to
the below image:

Filesets Status Device Details Command History =~ Managed Apps Installed Apps Installed Profiles Users Policies Soft
Request Type Status User Creation Date v Response Date Profile Id
Devicelnformation not sent 2024-10-17T723:07:15
SecurityInfo not sent 2024-10-17T23:07:15
DeclarativeManagement not sent 2024-10-17T723:07:15
ProfileList not sent 2024-10-17T723:07:15
InstalledApplicationList not sent 2024-10-17T723:07:15
ManagedApplicationList not sent 2024-10-17T723:07:15
ManagedApplicationConfiguration not sent 2024-10-17T723:07:15

ManagedApplicationConfiguration
ActivationLockBypassCode
ManagedApplicationList
InstalledApplicationList

ProfileList
DeclarativeManagement
Securitylnfo

Devicelnformation

acknowledged
command error
acknowledged
acknowledged
acknowledged
acknowledged
acknowledged

acknowledged

2024-10-17T722:24:00
2024-10-17T22:24:00
2024-10-17T22:23:57
2024-10-17T22:23:53
2024-10-17T22:23:52
2024-10-17T22:23:52
2024-10-17722:23:51

2024-10-17T22:23:49

2024-10-17T722:24:00
2024-10-17T22:24:00
2024-10-17T22:24:00
2024-10-17T722:23:57
2024-10-17T722:23:53
2024-10-17T22:23:52
2024-10-17722:23:52
2024-10-17T22:23:51

Request Types are defined by Apple and details may be viewed on the Apple Development Pages

Status and Error messages are those reported by Apple, with the exception of 'not sent'. The possible values are:

Status

not sent

Details

Apple Request Response

The command is queued and awaiting for the
device to reply to the APNs request

https://kb.filewave.com/uploads/images/gallery/2024-10/jD3xGlZsALz9lLRX-image.png
https://developer.apple.com/documentation/devicemanagement/commands_and_queries

acknowledged Device has processed the request Acknowledged

not now Device has received the request, but is unable to NotNow
process the request at this time

command error An error has occurred Error or CommandFormatError

& As of FileWave 15.5, the status of Command Queue requests are now accessible from within standard Inventory Queries

'not sent’

Before any requests may be sent to a device, the FileWave Server sends an Apple Push Notification (APN) request to Apple. Apple
queue these APNs requests and only after the device checks in with Apple and pulls the APNs request, will the device then check-in
with the defined server.

@ APNs request is nothing more that a notification for the device to check-in with the defined server.

Whilst waiting for the device to receive the APNs request and check-in, the Command History will display 'not sent'

Where requests are 'not sent' or 'not now', new requests will not be added to the queue for the same Request Types, since
there is already a queued request waiting. The 'Creation Date' displays the time and day the request was added to the queue.

Response Commands

Once the APNs request has been received by the device, on check-in, queued requests may then be sent to the device.

‘acknowledged'

The request has been received by the device, processed and reported back to the FileWave Server as completed.

'not now'

Some requests will not be accepted, until the device is in a certain state. For example, a user may need to be logged into the device to
process the provided request.

Hence, the request has been received and the device has responded, but the request is awaiting the desired state before it will finish
processing the request and report back as much.

‘command error'

In some instances, the request may not be able to complete, due to an error. Apple have two defined error status values:

e 'Error' - An error occurred (the device will report error details in the response to the request)
® 'CommandFormatError' - The request protocol was incorrect, e.g. a malformed request

The 'Error Msg' column shown in the Command History view reports information provided by the device back to FileWave
Server and contains information as set out by Apple.

Apple's developer page demonstrates greater depth on MDM requests:

Sending MDM Commands to a Device

User vs System

The user column contains the channel used for the request. Where the user column is blank, this implies the request is a System
Channel request. Otherwise the name of any managed users existing on the device will be displayed for those requests.

Some Request Types are required for both User and System, e.g.

Filesets Status Device Details Command History Mana

Request Type Status User
Devicelnformation acknowledged

Devicelnformation acknowledged sholden

https://developer.apple.com/documentation/devicemanagement/implementing_device_management/sending_mdm_commands_to_a_device
https://kb.filewave.com/uploads/images/gallery/2024-10/vfEJPJg84YrEs9CZ-image.png

DeviceInformation may report inventory regarding the System and the User. As such there are multiple requests, one per Managed
User and one for System.

Profile Installation

Profile Settings defines whether a Profile should be Installed for the System or User:

[) Fileset Name: Profile - CH Time Server

Payload = Settings

Platform Installation
i0s Users
£9 macOS System

5

Reinstall this profile if the user removes it

Force legacy install (macOS 10.7+)

Cancel

As with other Request Types, if the Profile is configured for System Installation, the User channel column should be blank, whilst
those set as User should show a Request Type of 'InstallProfile' per managed user.

The below image shows installation of two differing Profiles, one set as System and the other set as User:

Filesets Status Device Details Command History = Managed Apps Installed Apps Installed Profiles Users Policies Software Updates DDM Declarations

Request Type Status User Creation Date v Settings ltems Response Date Profile Id
InstallProfile acknowledged 2024-10-17T23:55:25 2024-10-17723:55:26 fw1063.home.22e28158-118¢-4956-8640-1f4119(
InstallProfile acknowledged sholden 2024-10-09T22:14:08 2024-10-09T22:14:08 mI1063.local.9645a261-8941-4827-b0b8-21b97a

There was a period of time where all Profiles could be set as either User or System regardless. Apple enforced 'correct'

A Installation channels several major versions back. As such, if Profiles were delivered before such change, it may be possible
that the User column may show a User despite the Profile being set as System. This should no longer be the case for newly
delivered requests

Although altered values in a Profile Payload will just cause the Profile to be updated on a device, changing the Installation
@ channel from User to System or vice versa, will cause the Profile to be uninstalled and then re-installed using the newly
defined Installation channel.

Only some Profile Payloads may be defined as either User or System. If one option is greyed out, the Profile Setting cannot be
changed.

Commands

Some requests are commands designed to action an event, e.g. rename a device, erase a device, etc. If the request is altering a
setting, the Request Type reported is 'Settings' and the 'Settings Items' column will display details regarding the setting to be altered.

The below image shows a request to alter the name of the device:

Filesets Status Device Details Command History = Managed Apps Installed Apps Installed Profiles Users Policies

Request Type Status User Creation Date v Settings Iltems

Settings not sent 2024-09-17T21:00:59 [{"Item": "DeviceName", "DeviceName": "mac0S12VM"}]

https://kb.filewave.com/uploads/images/gallery/2024-10/6T62lehQl4pBcI3M-image.png
https://kb.filewave.com/uploads/images/gallery/2024-10/BBqw1FS7LV9uwLuS-image.png
https://kb.filewave.com/uploads/images/gallery/2024-10/9pQW5eoy10FRklFv-image.png

& An Update Model will be required before the Setting request is added to the device's request queue.

Further details regarding '‘Command Policy' Fileset Payloads can be viewed in the following KB:

Profile Editor Command Policy

Troubleshooting

Some typical items to consider when reviewing Command History:

The Command History tab will not be present if the device is not MDM enrolled (i.e. a macOS device with only the FileWave
Client installed)

A profile does not show on the device, yet command is acknowledged. This is typically seen where a Profile is set as User,
but the currently logged in user is a local user, but not the local managed user. Compare the Command History User column
with the currently logged in user.

Where possible, it only might be prudent to set Profiles as System rather than user, if all local users require management
(Note: this may also impact Administrators logging into systems, when attempting to fix a user's issue)

Where an error has occurred, review the 'Error Msg' column. If the error message does not appear clear, consider raising a
ticket with the FileWave Support team.

As noted above, when a Profile Setting is changed, the existing Profile is removed before being re-delivered through the
newly specified Installation channel (User or System). If the Profile is essential for network connectivity, the device will lose
its network connection, making it impossible to receive the updated Profile.

https://kb.filewave.com/books/profiles-apple/page/profile-editor-command-policy

Adapting to Apple's TLS Server Certificate
Validity Limits

What

This article provides guidance on adapting to Apple's updated policy regarding the maximum allowed lifetimes of TLS server
certificates. Effective from September 1, 2020, 00:00 GMT/UTC, TLS server certificates must have a validity period no greater than
398 days. This policy, part of Apple's efforts to enhance web security, affects TLS server certificates issued from Root CAs preinstalled
with i0S, iPadOS, macOS, watchOS, and tvOS.

When/Why

The policy is critical for administrators using FileWave to manage Apple devices. It ensures that device profiles and their associated
TLS server certificates comply with the new security standards. Non-compliance results in network and application failures, and can
prevent websites from loading on affected Apple devices.

How

To comply with Apple's policy:

1. Certificate Issuance and Renewal: Certificates should be issued with a maximum validity of 397 days to avoid edge case
issues.

2. Check Existing Certificates: Certificates issued before September 1, 2020, are not affected by this change. However, their
renewal must comply with the 398-day limit.

3. Profile Deployment in FileWave: Ensure all TLS server certificates embedded in profiles for Apple devices meet these
validity requirements.

4. Monitoring and Planning: Regularly monitor certificate expiration dates and plan renewals accordingly.

Related Links

® Apple's Certificate Policy Announcement - Details on the TLS server certificate validity limit.
® RFC 5280, Section 4.1.2.5 - Reference for certificate validity period definition.

Digging Deeper

This policy shift reflects a broader move towards enhancing digital security and trustworthiness in online environments. By reducing
certificate lifetimes, Apple aims to mitigate risks such as certificate compromise and mis-issuance. For FileWave users, adapting to
these new requirements is essential for maintaining secure, reliable, and compliant management of Apple devices across various
environments.

https://support.apple.com/en-gb/102028
https://tools.ietf.org/html/rfc5280#section-4.1.2.5

Apple App Store and Automatic Updates

Developers are frequently updating applications and submitting new versions to Apple App Store. FileWave is automatically sending
requests to devices to upgrade applications when a new version is available.

How does FileWave detect if there is an update?
ForiOS 11.3 and later and macOS 10.13.4 and later:

Apple's MDM protocol returns the information when FileWave requests the list of installed applications: each application will provide,

via the HasUpdateAvailable flag, if an update is available, and in this case, FileWave send the device a command to upgrade the
application (InstallApplication command).

For previous OS versions:

Every hour, FileWave is contacting Apple's iTunes database and updates metadata about applications used in your environment.
When a device checks in for Verify, we compare the application versions (on the device, from iTunes) and if the version from iTunes is
higher we know there is an update.

The automatic update process does not work as expected, what could be
the reasons?

If the flag is not provided by the device (older iOS / macOS version for instance), it may happen that the version from iTunes and the
version reported by the device are not accurate (they are filled by hand by the developer and they may be incorrect). Apple introduced
the hasUpdateAvailable flag exactly to solve this problem.

From Apple's documentation:

) If true, the app has an update available. This key is present only for App Store apps. In macOS, this key is present only for
Volume Purchase Program (VPP) apps. This status updates daily and isn’t always up-to-date when installing an app.

Unfortunately, the flag provided by the device is not 100% reliable. FileWave will only update the application once a day.
The InstallApplication command will not be sent if the device reports HasUpdateAvailable=True and the same command has been
already sent that same day. But if the flag is not properly updated by the device the next day, FileWave will request an update.

We have seen reports in the past that some iOS versions would not update the flag properly even if the application is up to date. And
because the flag is not updated within 24h, FileWave will request the application to be reinstalled every day, which may be an issue
for the end-user or for network bandwidth. In this situation, the best is to contact FileWave support and Apple Care. We will help you
configuring both FileWave and your device to gather all the logs Apple will require to investigate the issue. Most of the time, upgrading
iOS or macOS to the most recent available version solves the problem.

When looking at FileWave's Client Info for impacted devices, the Managed Applications tab will show you the value of the flag - if it is
always "True", there is likely something wrong on at the device level.

https://developer.apple.com/documentation/devicemanagement/installedapplicationlistresponse/installedapplicationlistitem?language=objc

Apple Content Caching service

What

Every device will individually reach out to Apple to pull Software Updates and VPP Apps and their respective updates. To alleviate the
amount of external traffic, Apple provide Content Caching.

When/Why

Any macOS device may be configured to provide Content Caching. Once configured, devices residing on the same network will be told
to use the Content Caching device to pull all updates. This means each update is only pulled from Apple once, for that network, and
devices will pull any cached updates from the device sharing this cache.

How!

When a device is informed to instal an OS update or VPP App (or App update), the device reaches out to the App Store. Typically the
device would then pull that update directly from Apple. However, for any registered Content Caching devices on that network, the
response from Apple would be to pull the update from the Content Caching device instead. For any update, the initial request for any
one update will cause the Content Caching device to download the update first. Once downloaded all requesting devices may then
receive the update from the local caching server instead.

Related Content

* m r Guide — Appl rt (UK
° t ntent hing on Mac — Appl rt (UK

Digging Deeper
Caching configuration is stored in the following file:

/Library/Preferences/com.apple.AssetCache.plist

A Custom Field could be created, using the following code, to determine devices which have Content Caching Enabled — Boolean
O(False) 1(True)

defaults read /Library/Preferences/com.apple.AssetCache.plist Activated

A device could be set to cache, by way of a Custom Settings Payload:

https://support.apple.com/en-gb/guide/deployment/depde72e125f/web
https://support.apple.com/en-gb/guide/mac-help/mchl9388ba1b/mac
https://support.apple.com/en-gb/guide/mac-help/mchl3b6c3720/mac

Profile Editor

Q, custom settings

show only configured custom Settings &

Preference Domain
General

The name of a preference domain (com.company.application)
e Mandatory

com.apple.AssetCache

© Forced Set Once

Property List Values

Key value pairs for settings in the specified domain

Key Type Value
Activated Boolean
Upload File... Add Item Delete Item

Please check Apple's Configuration Profile reference for OS compatibility.

Cancel 1 validation error

Settings Load Profile

https://kb.filewave.com/uploads/images/gallery/2023-07/NYhCVMJksk6lwe3g-image.png

Bypassing DPI for Apple Traffic in MDM
Communication

What

This article explains the importance of bypassing Deep Packet Inspection (DPI) on network traffic directed to Apple's IP range
(17.0.0.0/8) to ensure seamless communication between Apple devices and the FileWave Mobile Device Management (MDM)
solution.

When/Why

Deep Packet Inspection is a network packet filtering technique that examines the data part (and possibly also the header) of a packet
as it passes an inspection point, to determine what to do with the packet based on its content. This is often employed in firewalls,
intrusion prevention systems, and content filters to scrutinize traffic for security and compliance purposes.

However, when managing Apple devices via an MDM solution like FileWave, it's crucial to ensure uninterrupted communication with
Apple's network. The DPI can interfere with the SSL traffic to and from Apple's servers, thus hindering the communication between
your managed devices and the MDM server. This is particularly vital for the initial device setup, software updates, and continuous
management operations.

How

To prevent any interference with the communication between Apple devices and FileWave MDM, it's advised to configure your
network's firewall and content filters to bypass or disable Deep Packet Inspection for traffic destined to or originating from the IP
range 17.0.0.0/8. Here are general steps:

1. Access Firewall/Content Filter Settings:
® |ogin to your firewall or content filter management interface.
2. Create a Bypass Rule:
® Navigate to the section where you can create rules or policies.
® (Create a new rule to bypass DPI for the IP range 17.0.0.0/8.
3. Verify Configuration:
e After setting the rule, verify the configuration by testing the communication between your MDM and an Apple device.
® You can also check the logs to ensure traffic is flowing correctly without any SSL manipulation.

Related Links

® Deep Packet Inspection (Wikipedia) - Overview of Deep Packet Inspection.
® Apple's Managed Devices - Understanding Apple's Managed Devices and their communication.

® Default TCP and UDP Port Usage - FileWave port usage.

Digging Deeper

Understanding the technical intricacies of network traffic inspection and its implications on MDM communication is crucial for
ensuring a seamless operation of managed Apple devices. Disabling DPI for specified traffic ensures that the necessary
communication between your FileWave MDM server and managed Apple devices remains uninterrupted, providing a stable and
reliable management infrastructure.

https://en.wikipedia.org/wiki/Deep_packet_inspection
https://support.apple.com/en-us/HT210060
https://kb.filewave.com/books/filewave-general-info/page/default-tcp-and-udp-port-usage

Hardware Encryption Capabilities for Apple
Hardware

What

From a security perspective, it is important to understand the encryption capabilities of devices.

When/Why

In FileWave 14.6.0 some reporting was added to report on HardWareEncryptlonCaps

reported through Apple s MDM framework.

How

® Hardware Encryption Capabilities has been added as a field for iOS 4+ and tvOS 6+ devices to report the supported

encryption.
® Passcode Present had its description updated to explain how it ties to Hardware Encryption Capabilities and also is for iOS

4+ and tvOS 6+.
® Is Recovery Lock Enabled was added for macOS devices to reflect if Recovery Lock is enabled on Apple Silicon running

macOS 11.5+.

Digging Deeper

HardwareEncryptionCaps is an integer that indicates the underlying hardware encryption capabilities of the device, which is one of the
following values:

® 1 :Block-level encryption
® 2 :File-level encryption
® 3 :Both block-level and file-level encryption

This value is available in iOS 4 and later, and tvOS 6 and later.

© Foradevice to have data protection, HardwareEncryptionCaps mustbe 3 and PasscodePresent must true .

https://developer.apple.com/documentation/devicemanagement/securityinforesponse/securityinfo?changes=latest_minor

macOS Sonoma / 10S 17 support in FileWave
15.1.0+

What

i0S, iPadOS and tvOS 17 will be released on Monday, 18th of September. macOS 14 Sonoma was released on the 26th of September.
FileWave 15.1.0 released on Thursday, September 21, 2023.

When/Why

As an administrator, it is important to know if these new Operating Systems are supported in order to schedule device upgrade or new
purchase.

How
i0S, tvOS, iPad0OS 17

Generally, devices running iOS, tvOS, iPadOS can safely be upgraded at any time. FileWave 15.1.0 will bring new management
features for these devices.

macOS 14 Sonoma
Generally, a new version of macOS requires a new version of FileWave : desktop agent and server needs an update to report properly
the OS version, likewise various features like SIP detection within Filesets.

In addition, macOS 14 introduces changes related to application sandboxing which prevent FileWave 15.0 desktop agent or earlier
versions to upgrade without a device restart to complete the upgrade. FileWave 15.1 has been modified to adapt to these changes,
therefore it is then recommended to upgrade to FileWave 15.1 before upgrading to macOS Sonoma.

In case devices are upgraded to macOS Sonoma before FileWave is upgraded to 15.1, you have to know that:

® These devices won't report the macOS version properly until they are upgraded to FileWave 15.1 or newer client.
® Adevice restart will be required to upgrade FileWave client to version 15.1. This can be achieved automatically by enabling
the "requires reboot" option if you go to Properties for the upgrade Fileset.

As a reminder, released version of Operating Systems can be supported. Testing existing and new features is made with Beta versions
which are subject to change. These OS will be supported after the release and going through our QA process.

Related Content

® FileWave Downloads

® macOS 14 Compatible Devices (Custom Field)

® i0S 17 Compatible Devices (Quer

https://kb.filewave.com/books/downloads
https://kb.filewave.com/books/macos/page/macos-14-compatible-devices-custom-field
https://kb.filewave.com/books/ios-ipados/page/ios-17-compatible-devices-query

Microsoft Enterprise SSO plug-in for Apple
devices

What

The Microsoft Single Sign-On (SSO) plug-in for Apple devices is a software extension that allows users to log in to Microsoft services
on their Apple devices without needing to enter their credentials each time. This plug-in enables users to authenticate once and use

Microsoft services seamlessly across multiple applications and services. For more information, you may visit, Microsoft Enterprise
SSO plug-in for Apple devices.

When/Why

Using the Microsoft SSO plug-in for Apple devices offers several advantages. First, it saves time by eliminating the need to enter login
credentials each time a user needs to access Microsoft services. This can be particularly useful for users using Microsoft services on
their Apple devices.

Second, the Microsoft SSO plug-in provides an added layer of security. Users can use multi-factor authentication (MFA) to secure their
login credentials and protect their data from unauthorized access. The plug-in provides a more secure way to access Microsoft
services on Apple devices than standard login credentials.

Finally, the Microsoft SSO plug-in offers a more streamlined and user-friendly experience. Users can easily switch between different
Microsoft services without needing to log in again and quickly access their files and data on any device.

How

Below are the following requirements and configuration creation steps for deployment.

Requirements:

® The device must support and have an installed app that has the Microsoft Enterprise SSO plug-in for Apple devices:
© i0S 13.0 and later: Microsoft Authenticator app
o jPadOS 13.0 and later: Microsoft Authenticator app

o mac0S 10.15 and later: Intune Company Portal app

® The device must be enrolled in MDM, i.e. DEP enrolled.
® Configuration must be pushed to the device to enable the Enterprise SSO plug-in. Apple requires this security constraint.

Please Note: On macOS devices, Apple requires the Company Portal app be installed. Users don't need to use or configure the
Company Portal app, it just needs to be installed on the device. You may download here: Download the Company Portal app

installer package.

Microsoft Authenticator app deployment:

You may acquire and deploy the Microsoft Authenticator app via your ASM/ABM account. A similar method as any VPP application,
search the ASM/ABM, enter in the number of licenses for the VPP application, and click on GET.

https://learn.microsoft.com/en-us/azure/active-directory/develop/apple-sso-plugin
https://support.microsoft.com/account-billing/how-to-use-the-microsoft-authenticator-app-9783c865-0308-42fb-a519-8cf666fe0acc
https://support.microsoft.com/account-billing/how-to-use-the-microsoft-authenticator-app-9783c865-0308-42fb-a519-8cf666fe0acc
https://learn.microsoft.com/en-us/mem/intune/user-help/enroll-your-device-in-intune-macos-cp
https://go.microsoft.com/fwlink/?linkid=853070

Microsoft Authenticator X @

o é Microsoft Authenticator
Microsoft Authenticator
Microsoft Corporation - iOS App

Microsoft Corporation - iOS App
ok kkk $0.00
Authenticator+ App

Rocket Apps GmbH - i0S App
$0.00

Authenticator App Buy Licenses

v 2Stable - iOS and macOS

$0.00
) Assign to
Authenticator App ™

Codenhagen.lO ApS - i0S App
$0.00

Authenticator App, 2FA Price Quantity Payment Method
CHAMOMILE PTE. LTD. - iOS App
$0.00 $0.00 None

QR, Barcode Scanner for iPhone

o
ﬁ.nﬂi Kun Wang - i0S App Total Cost $0.00
$0.00

Creating the Configuration profile to be deployed to your devices:

. Open FileWave Central
. Select Filesets from the left side menu
. Select New Desktop Fileset
. Click on Profile
. Enter in the name of the Profile, example: Microsoft Single-Sign On
. Select the Single Sign-On Extensions payload
. Enterin the following for specified payload:
1. i0S settings:
® Extension ID: com.microsoft.azureauthenticator.ssoextension
® Team ID: This field isn't needed for iOS but you can use UBF8T346G9
2. macOS settings:
® Extension ID: com.microsoft.CompanyPortalMac.ssoextension
® Team ID: UBF8T346G9
3. Sign-On Type:
® Type: Redirect
4. URL identity providers:
® https://login.microsoftonline.com
https://login.microsoft.com
https://sts.windows.net
https://login.partner.microsoftonline.cn
https://login.chinacloudapi.cn
https://login.microsoftonline.us
https://login-us.microsoftonline.com

5. Optional Custom Configurations (Not required):
® Enable SSO for all apps with specific bundle IDs or prefix IDs: Key:AppPreFixAllowList - Type:String -
Value:com.microsoft., com.apple., or com.business.travelapp

NooabhwNRE

® Sign in with browser that don’t use MSAL and Safari: Key:browser_sso_interaction_enabled - Type:Number -

Value:1l
® Disable OAuth 2 app prompts: Key:disable_explicit_app_prompt - Type:Number - Value:1

<

https://learn.microsoft.com/en-us/azure/active-directory/develop/apple-sso-plugin#more-configuration-options

Profile Editor

Q Search Not set
show only configured

The token this device uses for registration with Platform SSO

General [optional]
= Mandatory

Extension Identifier

Bundle identifier of the app extension that performs the single sign-on

'& Single Sign-On Extensions G:om.microsoft.azureauthenticator‘ssoextension)

1 payload(s) configured.

Team Identifier

Team identifier of the app extension that performs the single sign-on

UBF8T346G9

Sign-on Type
Credential

URLs

URL prefixes of identity providers on whose behalf the app extension performs single sign-on

https://login.microsoftonline.com
https://login.microsoft.com
https://sts.windows.net
https://login.partner.microsoftonline.cn
https://login.chinacloudapi.cn

https://login.microsoftonline.us

https://login-us.microsoftonline.com
\

[+]

Custom Configuration

Custom configuration for the app extension

Key Type Value

AppPrefixAllowList String com.microsoft.,c...
browser_sso_interaction_enabled = Number 1

disable_explicit_app_prompt Number 1

Please check Apple's Configuration Profile reference for OS compatibility.
Cancel Settings Load Profile

Deployment

Next deploy the Microsoft Authenticator app and Configuration profile on a few devices. If you're not deploying the Microsoft
Authenticator app using an app policy, then users must install it manually. Users don't need to use the Authenticator app, it just needs
to be installed on the device.

v £ Microsoft Single Sign-On
[] i0S App - Microsoft Authenticator

@ Profile - Microsoft Single Sign-On
Users sign in to any supported app or website to bootstrap the extension.

Bootstrap is the process of signing in for the first time, which sets up the extension. After users sign in successfully, the
extension is automatically used to sign in to any other supported app or website.

Meaning the end users will need to sign into their Microsoft account for their first time manually for the extension to
authenticate successfully.

You can test single sign-on by opening Safari in private mode (opens Apple's web site) and opening the https://portal.office.com site.
If configured successfully, no username and password will be required.

https://support.microsoft.com/en-us/account-billing/how-to-use-the-microsoft-authenticator-app-9783c865-0308-42fb-a519-8cf666fe0acc
https://support.apple.com/guide/ipad/browse-the-web-privately-ipad8ea0fc1a/ipados

Related Content

® Microsoft SSO for macOS devices

https://kb.filewave.com/books/macos/page/microsoft-enterprise-platform-single-sign-on-for-macos

Understanding Similar and Identical Software
Update Names in FileWave for Apple Devices

What

As a Unified Endpoint Management tool, FileWave manages a wide range of devices, including Apple devices such as macOS, iOS,
iPadOS, and tvOS. In the Software Updates list for these devices, you may notice updates that have similar or identical names, such as
"iPad0S 16.1," "iPad0Ss 16.1," and "iOS 16.1." This can be confusing, as it may seem like there are duplicate updates or that the
updates are intended for different devices.

When/Why

This is due to how Apple publishes updates for its devices. Different devices, as well as different versions of macOS and iOS, may have
updates with slightly different names. For example, an update for iPadOS may have the same version number as an update for iOS,
but the names will be slightly different to reflect the intended device.

How

To ensure that all of your Apple devices are updated with the latest patches, it is important to enable all variations of the patch for a
specific version (e.g., 16.1) that you are trying to update. This will ensure that all relevant devices receive the necessary updates.
Ensuring that all of your Apple devices are up to date is crucial for maintaining the security and functionality of your organization's
technology.

Related Content

® Apple MDM Software Updates
® View - Software Updates

https://kb.filewave.com/books/software-updates-apple/page/apple-mdm-os-software-updates
https://kb.filewave.com/books/filewave-anywhere-help-menus/chapter/view-software-updates

