DEP Notify - How to provide progress visibility
during DEP activation (macQOS)

New to the Device Enrollment Program (DEP) process? Do you have a create full of macOS devices that need to be prepared and
issued to end users? Did this need to happen yesterday?

The world of DEP device provisioning has been a great help and has improved the speed at which devices can be issued to end users.
Gone are the days of monolithic imaging! Long live DEP! But what is happening when a macOS device is going through the Setup
Assistant process? Want to get some visibility on what is being installed during the device activation? Traditionally, when a device
goes through the DEP assistant, any number of applications can be deployed to the device. The problem with this approach is that
there is not any indication given to the end user as to what is happening during this time interval. To an end user, it could appear that
there is a problem with the device, and they may create support tickets to your Help Desk on the subject.

In order to avoid that, we need to provide some visual indication of what is happening behind the scenes during this setup time. To do
so, we will leverage two separate open source projects that are in use in the mac community, namely InstallApplications and
DEPNOotify.

FileWave, by default, will provision a DEP device, enroll it into the MDM server, then deploy the custom macOS client to the device.
The process looks something like this:

Start
A
Device boots from wiped HD state using
Enroll info Apple Davics - Recovery partition, boots to Satup
Enralmant Program (DEF) Assistant. Options displayed as definad
in DEP profila

Y

Device talks to FileWave MDM, gats the
FileWave Client and potentially many
other assigned packages

Create DEP token in the DEP portal and
import to FileWawva

Create and Assign DEP Profile to davice

Placeholdars Davics is “preparad”.

Resat macO3 device via Recovery Mode

We need to instruct the FileWave server to deploy the open source package InstallApplications first so that we can set up the
DEPNOotify package and get feedback with all the great logging information that FileWave gives via its client log. The modified process
looks something like this:

Device boots from wiped HD state using
Recovery partition. boots to Satup
Assistant. Options displayed as defined
in DEP profila

Enrall into Apple Davice -
Enralment Program (DEP)

Create DEP token in the DEP porlal and

Device talks to FileWave MDM, gats the

import 1o FileWawva Installdpplications packaga.

Create and Assign DEP Profile to davice

DEPMotify package is downloadad and

Placeholdars Installed at MDM chackin

!

Reset macOS device via Recovery Mode

DEPMotity installer, FileWawe Client
installer, and Energy Saver profile are
downdoaded and Installed

User is given visual feadback on what is
happaning in DEF setup via DEPMNotity
[parses the FileWave Client logs).

Stop

Step-by-step guide

Create, configure, and deploy the InstallApplications package

Create boostrap.json

1.

Visit Erik Gomez's blog to get a practical example of configuring InstallApplications as well as some history and background
on the project.

Visit Erik Gomez's github site and download the latest code. For the purposes of this document, I have used version 1.1.
Follow the instructions on the above site to configure your bootstrap.json file. Also, see the section below "Generating your
bootstrap.json" for a simple example to get started with. To make troubleshooting easier, configure one or two packages
defined in your bootstrap.json and ensure your packages are downloading correctly and your Install Application launch
agent and launch daemon work successfully. If you have too many packages defined, it may be more difficult to determine
where your configuration problem lies.

Generate your bootstrap.json with the generatejson.py script on Erik's site, which automatically generates the SHA256
hashes for you.

Once you have the bootstrap.json file generated (below is a sample boostrap.json), you will need to host it somewhere (like
your filewave server) in order for the macOS client to download it during DEP activation.

bootstrap.json

{
"preflight": [1],
"setupassistant": [

{

"file": "/some_path/DEPNotify_installer.pkg",

"url": "https://<your_filewave_server>:20443/some_folder/DEPNotify_installer.pkg",
"packageid": '"com.package.depnotify",

"version":

"l.@",

http://blog.eriknicolasgomez.com/2017/12/18/Custom-DEP-Part-9-A-practical-example-of-InstallApplications-Crypt-DEPNotify-and-Munki/
https://github.com/erikng/installapplications

"hash": "some_long_hash",

"name": "DEPNotify",

"type'": "package"

}’

{

"file": "/some_path/FileWave_installer.pkg",
"url": "https://<your_filewave_server>:20443/some_folder/filewave_installer.pkg",
"packageid": '"com.package.filewaveinstaller",
"version": "1.0",

"hash": "some_long_hash",

"name": "FileWave Client",

"type": "package"

}

]5

"userland": [

{

"file": "/some_path/EnergySaver.py",
"url": "https://<your_filewave_server>:20443/some_folder/EnergySaver.py",
"hash": "some_long_hash",

"name": "Energy Saver Profile",
"type": "rootscript"

}

]

}

Note: In the above bootstrap.json, the preflight stage is required, even if it is empty. If you don't have it defined, the script will
error out (01/20/2018).

Hosting and Serving your packages via the FileWave Server (Linux)

To serve packages from FileWave, we will need to modify the httpd_custom.conf file for apache. To do this:

1. On the FileWave server, open "/usr/local/filewave/apache/conf/httpd_custom.conf" and add the following:

Alias /custompkg /usr/local/filewave/custompkg
<Directory "/usr/local/filewave/custompkg">
Options Indexes FollowSymLinks

AllowOverride All

Order allow,deny

Allow from all

</Directory>

2. Restart apache with "fwcontrol apache restart"
3. Create the folder "custompkg" within /usr/local/filewave/. This will be the storage location for all of the packages that you
defined in your boostrap.json file.

Testing the InstallApplications workflow outside of the DEP activation
process

1. Testing the InstallApplications workflow outside of the DEP workflow will save you time.
2. Todo this, execute the installapplications.py using the following command line on any macOS test device, such as a VM:

Launching installapplications.py manually

sudo python /Library/Application Support/installapplications/installapplications.py --jsonurl
https://<your_filewave_server>:20443/bootstrap.json

There is also an option to skip the validation of the bootstrap.json file. Use this option to include the bootstrap.json in the
installapplications package rather than download it via url.

sudo python /Library/Application\ Support/installapplications/installapplications.py --jsonurl
https://<your_filewave_server>:20443/bootstrap.json --skip-validation

It turns out that the installapplications.py really doesn't like urls that have redirection. So, if you want to use some file hosting site like
Dropbox, etc. think again. You may choose to host all the files on github, but then convert to raw links using rawgit.com; these links do

not seem to redirect and worked fine to download installer packages via installapplications.py. Alternatively, you can choose to serve
these files directly from your FileWave server.

http://rawgit.com/

Configure the InstallApplications LaunchDaemon and LaunchAgent

LaunchDaemon:

1. Edit payload/Library/LaunchDaemons/com.erikng.installapplications.plist

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" "http://www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">

<dict>

<key>Label</key>

<string>com.erikng.installapplications</string>

<key>ProgramArguments</key>

<array>

<string>/usr/bin/python</string>

<string>/Library/Application Support/installapplications/installapplications.py</string>
<string>--jsonurl</string>
<string>https://<your_filewave_server>:20443/custompkg/bootstrap.json</string>

<l-- <string>--iapath</string> -->

<!-- <string>/Library/Application Support/installapplications</string> -->
<l-- <string>--laidentifier</string> -->

<l-- <string>com.erikng.installapplications</string> -->

<l-- <string>--ldidentifier</string> -->

<!-- <string>com.erikng.installapplications</string> -->

<string>--depnotify</string>

<string>DEPNotifySkipStatus</string>

<string>Command: WindowTitle: Welcome to your Mac!</string>
<string>Command: NotificationOn:</string>

<string>Command: Quit: Thanks for your patience while we setup your new mac.</string>
<string>Command: WindowStyle: ActivateOnStep</string>
<string>DEPNotifyPath: /Applications/Utilities/DEPNotify.app</string>
<string>DEPNotifyArguments: -filewave</string>

<!-- <string>DEPNotifyArguments: -filewave -fullScreen</string> -->
<!-- <string>--reboot</string> -->

<string>--skip-validation</string>

</array>

<key>RunAtLoad</key>

<true/>

<key>StandardOutPath</key>
<string>/var/log/installapplications.log</string>
<key>StandardErrorPath</key>
<string>/var/log/installapplications.log</string>

</dict>

</plist>

In the above example, I left the reboot and fullscreen option disabled, but feel free to adjust this according to your needs.
LaunchAgent:

There was no need to adjust this, but if you wish to customize the install applications bundle ID, you will have to edit this file.

Signing your InstallApplications package

Prerequisite: Membership in Apple's Developer Program

1. Use a package creation utility to generate the .pkg for installapplications. One type of tool to use is Apple's command line
pkgbuild, for example:

pkgbuild --identifier com.erikng.installapplications --root <path_to_root_of_installapplications_payload>
InstallApplications.pkg

1. Only distribution style packages are supported, so to convert from a flat package to a distribution package:

productbuild --package InstallApplications.pkg InstallApplicationsDistr.pkg

http://developer.apple.com/
https://developer.apple.com/legacy/library/documentation/Darwin/Reference/ManPages/man1/pkgbuild.1.html

1. Tosign the distribution package:

J/usr/bin/productsign --sign "Developer ID Installer: <yourID> (XXXXXXXX)" InstallAppplicationsDist.pkg
FileWaveClientInstaller.pkg

1. To check your signing, you can issue:

pkgutil --check-signature FileWaveClientInstaller.pkg

The above command should return "Status: signed by a certificate trusted by Mac OS X".

Test the "InstallApplications.pkg" thoroughly on a test mac before attempting to deploy via the DEP Setup Assistant.

Steps for deploying your signed InstallApplications.pkg
using FileWave

Instead of deploying the macOS custom pkg, you will be deploying the InstallApplications.pkg. If you are currently deploying the
custom FileWave client in your DEP workflow as the starting point, I highly recommend testing this workflow out on a test server
before deploying to production. The deployment scenario below considers that we are running FileWave on the linux appliance and
have NEVER previously deployed the custom FileWave client before using the InstallApplication DEP workflow.

1. Open an ssh connection to your FileWave server
$ ssh root@<yourfilewaveserver.com>

2. Run a complete backup of your filewave server.
3. Backup the current DEP macOS installer package

$ cd /usr/local/filewave/fwcld
$ mv FileWaveClient.pkg FWClient_old.pkg

4. Copy your signed InstallApplications.pkg on your mac to the /usr/local/filewave/fwcld folder on your FileWave server and
change its name at the same time

$ scp /InstallApplications.pkg root@yourfilewaveserver.com:/usr/local/filewave/fwcld/FileWaveClient.pkg

5. Remove the MD5 hash of the old FileWave macOS custom pkg from the database. You should see that the above query
should affect one row only.
$ /usr/local/filewave/postgresql/bin/psql mdm django -c "DELETE from jos_preferences WHERE key =

'dep_osx_package_md5' ;"

6. Set the MD5 checksum and version of the "FileWaveClient.pkg" (really now the InstallApplications package disguised as the
FileWave client package).

macOS FileWave Server:

sudo /usr/local/filewave/python/bin/python /usr/local/filewave/django/manage.pyc shell

from dos.fwcld_utility import get_package_sha256;

get_package_sha256(force=True)

from jos.preferences_manager import PreferencesManager; PreferencesManager.set_dep_osx_package_version("14.0.3")
exit()

fwcontrol server stop

fwcontrol server start

Linux FileWave Server:

sudo /usr/local/filewave/python/bin/python /usr/local/filewave/django/manage.pyc shell

from jos.fwcld_utility import get_package_sha256;

get_package_sha256(force=True)

from jos.preferences_manager import PreferencesManager; PreferencesManager.set_dep_osx_package_version("14.0.3")
exit()

fwcontrol server stop

fwcontrol server start

Command to execute to generate the new MD5 for the "fake" Custom Client (InstallApplications.pkg):

https://kb.filewave.com/books/filewave-server/page/filewave-server-backup-and-restore

from jos.fwcld_utility import get_package_md5;
get_package_md5(force=True)

This will generate a result like:
['70c829ddd9bd2aeafbe07fdd35f91c03']

Command to set the new "version" of the package:

from jos.preferences_manager import PreferencesManager; PreferencesManager.set_dep_osx_package_version("12.7.1")

1. Exit the psql shell with "\q"
2. Restart the filewave server:

fwcontrol server restart

Result

During setup assistant, you will no longer get the custom FileWave client delivered first. The FileWave client will be installed by the
InstallApplications script, along with any other crucial application / setup file that is needed (such as the Energy Saver) during DEP
provisioning. Once the FileWave client is on the device, all other associated filesets can be deployed according to the needs of the end
user.

“Revision #3
*Created 13 July 2023 18:21:13 by Andrew Kloosterhuis
/' Updated 9 September 2024 09:25:39 by Andrew Kloosterhuis

