API Sample Code

e Bulk Update the iOS Enrollment User (auth_username) and Client Name using API

e Bulk Update the Enrollment User (auth_username) using API

® How to write to a custom field using the FileWave API
® Managing Client States via the FileWave API

® Returning Device Information as a JSON

e Sending MDM Commands

® Restarting Devices with API

file:///tmp/knp_snappy6882ad11a07d90.18931790.html#page-598
file:///tmp/knp_snappy6882ad11a07d90.18931790.html#page-312
file:///tmp/knp_snappy6882ad11a07d90.18931790.html#page-309
file:///tmp/knp_snappy6882ad11a07d90.18931790.html#page-890
file:///tmp/knp_snappy6882ad11a07d90.18931790.html#page-310
file:///tmp/knp_snappy6882ad11a07d90.18931790.html#page-318
file:///tmp/knp_snappy6882ad11a07d90.18931790.html#page-974

Bulk Update the i10S Enrollment User
(auth_username) and Client Name using API

What

The api_UpdateiPadNameandAuthUser script is a tool that allows FileWave admins to update the names and assigned users of
multiple iOS devices in bulk, using a CSV file containing the serial numbers, desired device names, and LDAP usernames of the
devices. This can be particularly useful for education organizations but may also be useful for others who do mass re-distributions of
devices like iPads.

When/Why

If you need to quickly and easily reassign a large number of iPads to different users, the api_UpdateiPadNameandAuthUser script can
save you time and effort. Instead of manually updating each device individually, you can simply prepare a CSV file with the necessary
information and use the script to apply the changes to all of the devices at once. This can be especially useful when you need to set up
a large number of new devices for use by different users or when you need to make changes to the assignments of existing devices.

How

To use the api_UpdateiPadNameandAuthUser script, you will need to follow the instructions in the README file that accompanies the
script:

1. Download the zip file that contains the script and the README.

Download: api_UpdateiPadNameANDAuthUser v2.zip

Edit the CSV file to contain a list of serial numbers, device names, and LDAP usernames for the devices you want to update.
Open Terminal (on a Mac or Linux) and navigate to the directory that contains the script and CSV file.

Make the script executable by running the command chmod +x ./api_UpdateiPadNameandAuthUser.sh.

Run the script using the command ./api_UpdateiPadNameandAuthUser.sh SERVER TOKEN CSVFILE, replacing SERVER with
the name of your FileWave server, TOKEN with your FileWave API token, and CSVFILE with the path to the CSV file you
prepared in step 2.

agpwn

The script's output will show you the progress of the updates and will indicate when the process is complete.

If you are running into an issue where the script says that it completed and is Updating Model but no changes are made -
please add a blank line at the end of your .csv, save it and try the command again.

https://kb.filewave.com/attachments/319

Bulk Update the Enrollment User
(auth_username) using API

What

This problem and solution came from a customer who had many devices in FileWave, yet did not have the 'Enrollment User' (internally
known as auth_username) populated. In order for automatic associations of iPads with Apple Classroom, devices must have an
enrolment user set. While it’s possible to set these one by one, that does not scale well. Even hosted customers could benefit from
this example. It can set the Enrollment User for both iOS as well as macOS devices in FileWave.

When/Why

The below solution leverages the FileWave Anywhere API (v2) and is a great example that any customer could build. You can run this
script from your mac, Windows, or Linux computer, and it will talk to the API and make the changes in bulk.

This example happens to be a Python script. As such, if ran on the FileWave Server, Python will already be installed. However,
for hosted customers, the script will not be ran on the server and it should be necessary to have Python installed on the device
@ running this script. We have also included a zsh script which may be easier for someone to modify or use.

https://www.python.org/downloads
https://docs.python.org/3/using/windows.html

How
® The first step is to download the script:

Bulk Update Enrollment User.zip

® Once downloaded, the zip contains three files: bulk_change_device_authname.py,
bulk_change_device_authname_updated.zsh and auth_username.csv and you can run either the .py or the .zsh script as
they will do the same thing.

e Ifthe Python script is not being ran directly on a FileWave Server, it may be necessary to alter the first line of code, to
specify the location of Python on the device running the script. For example, on macOS, that may be:
#/usr/local/bin/python3

e If you do not have python installed, you may use the updated shell script. The README text file will have the updated
instruction guide on using the shell script.

® The CSV file should be edited to include the desired list of Devices with Users. The supplied template looks like:

Device ID,Enrollment Username
67d6f4bfcf27fa62bb9815365c67ebf7fed8f9c3, test

An Inventory query could be used to obtain the list of Device IDs. Note, the script is only expecting two columns in the order of Device
ID and Enrollment Username.

L) It may assists to initially export additional columns to assist with device identification, but after adding the usernames, be sure
to remove any of these additional columns in the CSV file.

https://kb.filewave.com/books/application-programming-interface-api/page/filewave-anywhere-api-v2
https://kb.filewave.com/attachments/461
https://www.python.org/downloads/
https://docs.python.org/3/using/windows.html

QueryBuilder - new query

Q serial nu Name: query name

Main Component: i0S/tvOS Device
Component

Include Archived Clients
v ActivationLock Bypass Code

Serial Number Criteria Fields

v All Devices

Drop here the fields you want to see in the query report ; change rder by moving column header.

e 1D Product Device Name Device ID Serial Number Last Connected

Serial Number iPad11,4 Joshua's iPad 00008020-000859860AF1002E FOFYD15YLMXO0 8/10/22 11:41 AM
Vv Booster iPad7,3 DMPTT57WHP50 3dac1b7e0f250d27d4a6272c41db2a67801a760f DMPTTS7WHP50 8/10/22 11:53 AM

Device ID iPhone13,2 Erikson’s iPhone 00008101-001A706A1EAQ00TE DNPDH9OTODXR 8/10/22 1:07 PM

Installed Server Certificates iPhone13,4 Josh's iPhone 12 Pro Max 00008101-000A34503468001E F2MDMOAVOD46 9/7/217:22 AM
v Client Certificate

Serial Number
w_DNFP Navira
An unique identifier for the device. On
desktop platforms, it is often a serial ~ 4 row(s)
number. On iOS, it is the UDID.
Internal name: device_id

Cancel Save

e Obtain the desired users base64 Application Token from the FileWave Administrators Assistant view

FileWave Administrators

Account Name Phone El User details Permissions VPP tokens Application tokens TeamViewer

2 josh jc

2 J 1token(s) Q Search
2 fwadmin

BT oo
!

Default Token {b5cb89a0-fe59-4cb1-9359-d72b79369cc0}

Token name: Default Token
Description: - 1hs gefault token is required for FileWave Admin and cannot be deleted.

Token: {b5cb89a0-fe59-4cb1-9359-d72b79369cc0}

Regenerate token

Token (base64): e211Y2I140WEWLWZINTktNGNiIMS05MzU5LWQ3MmI30TM20WNjMHO=

Script example: curl -s -k -H "Authorization: e211Y2140WEWLWZINTktNGNiMS05MzU5LWQ3MmI30TM20WNjMHO=" https://
fwjoshlab.filewave.net:20445/inv/api/v1/component/

& 2 Manage VPP Tokens Check LDAP/IDP user permissions... LDAP/IDP user application tokens... Apply Cancel OK

The following commands may now be executed on macOS or Linux (a similar command could be executed on Windows) to action the
process.

Python script command:

./bulk_change_device_authname.py --token {b5ch89a0-fe59-4cb1-9359-d72b79369c0} --host ExampleCo.filewave.net --
mapping ./auth_username.csv

Updated shell script command:

./bulk_change_device_authname_updated.zsh --host your.filewave.net --token {your_API_token} --mapping
./auth_username.csv

The script will give you feedback about the success or failure of any records.

Python Imports

The beginning of the Python script has a list of imports:

import argparse
import base64
import csv
import os

import re

https://kb.filewave.com/uploads/images/gallery/2023-07/dEfivbDOyKFgCwGU-image.png

import requests
import sys

If any are missing, e.g 'requests’, it should be necessary to instal them. The script should report such an error if any are missing when
ran. Some are available on a default Python setup.

It is possible to instal any missing. For example, on macOS or Linux, the command may appear as (depending upon the location of
Python)

/usr/local/bin/python3 -m pip install requests

Hopefully the script at this point has been successful and can be see as a great example of bulk actions.

Related articles

o How to write to a custom field using the FileWave API
® Command Line APT (v1)

e Anywhere API (v2)

https://kb.filewave.com/books/application-programming-interface-api/page/how-to-write-to-a-custom-field-using-the-filewave-api
https://kb.filewave.com/books/application-programming-interface-api/page/command-line-api-v1
https://kb.filewave.com/books/application-programming-interface-api/page/filewave-anywhere-api-v2

How to write to a custom field using the
FileWave API

It is often desirable to alter FileWave Custom Field values, especially when it comes to driving automated workflows.

o API calls have the distinct advantage of changing Custom Field values directly on the server, essentially making the change
immediate.

Where Custom Field values are driving Smart Group device inclusion, despite the API call making an immediate change, there
will still be a period of time before the next Smart Group evaluation.

How

Writing back to a Custom Field relies upon the following details:

Server URL

A way to recognise which device's Custom Field should be updated
A way to recognise the Custom Field

Custom Field type

An authentication token

A Some Custom Fields may have restricted values. Only one of these values should be posted in the API call to ensure expected
behaviour.

Restricted Values

Value restriction may be observed from within the Custom Field definition.

L Custom Fields

Custom Fields Q, sle_battery_replace_2015 Field Details
Display Name Mame

macOS Apple Battery Replace 2015
macOS Apple Battery Replace 2015

Internal Name

Using Internal name the field can be referenced im other parts of FlleWave

apple_battery_replace_2015

Description

Provided By

Dafines how the field value shall be populated

Administrator B

Assigned to all devices

Values
Data Type

string &l

Restrict allowed values

Replaced
Recall

NA

Serial

Error
Unchecked

i | b Import Export Duplicate Cancel

It is also possible to use Swagger (or therefore another API call) to return the 'choices' list of any Custom Field, by observing the
Custom Field definition:

URL path for query:
/api/inv/api/vl/custom_field/

Query response:

"to_be_deleted": false,
"field_name": "apple_battery_replace_2015",
"display_name": "macOS Apple Battery Replace 2015",
"data_type": "string",
"provider": 0,
"metadata": {},
"description": "",
"default_value'": "Unchecked",
"choices": [
"Replaced",
"Recall",
"NA",
"Serial",

"Error",

https://kb.filewave.com/uploads/images/gallery/2023-07/Aan2lcn3kiWLE6gl-image.png

"Unchecked"
]1
"is_global": false,
"used_in_inventory_queries": false,
"used_in_smart_groups": false,
"used_in_filesets": false,
"used_in_license_definitions": false,
"used_in_dep_profiles": false,
"used_in_dep_rules": false,
"used_in_workflows": false

}7

Which API

Custom Fields, as mentioned in the other API KB documents, are best targeted with the Command Line RESTful API.

This example is demonstrating the possibility of targeting devices using both Serial Number and Device ID. The Server's FQDN, API
authentication token and Device ID can be supplied as Launch Arguments, however, for security reasons it is better to supply the
token as an Environment variable. When targeting Internal Names of Custom Fields (as either Launch Arguments or Environment
Variables), surround the Internal Name with % symbols.

D apple_battery_replace_2015.sh
Kind: File

Created: Mon Jul 12019 10:52 am

Modified: Mon Jul 12019 10:52 am

Permissions ACLs Werification Executable Flags

Execution Control

Execute once when activated

Interactive (ignored in non Windows™ clie
© Non-interactive (background)

Wait for executable to finish

Wait for: = |nfinite a

Launch Arguments Enwvironment Variables

Variable ~ Value
auth eyRkATgILze3LWVmNZEtNDhiYy1i

device_id %device_id%

+

The values of the environment variables are set ju
To use an inventory field value, use the syntax %F
For instance: MY_VAR: foo-%asset_tag%

MNote: environment variable names are case insen:

Note: Log files will be collected for synchronous non-

Click the lock to take control of this Fileset

The start of a macOS script may look like:
#!1/bin/zsh
Environment Variables
$auth - base64 authentication token

$device_id - Device ID

server_fqdn=$(defaults read /usr/local/etc/fwcld.plist server) # FW Server FQDN

https://kb.filewave.com/uploads/images/gallery/2023-07/9s8UIJNKcvSExGjC-image.png

serial_number=$(ioreg -1 -d 2 | awk -F "\"" '/IOPlatformSerialNumber/ {print $(NF-1)3}') # device serial number
It is of course possible that all of these values could be supplied to the script as Executable variables.
The start of a PowerShell script may look like:

Environment Variables

$Env:auth - base64 authentication token

#

#

$Env:device_id - Device ID

SEnv:serial_number - device serial number
#

$Env:server_fqdn - FW Server FQDN

Reading a Custom Field

It may be necessary to read the Custom Field during the script execution. A JSON will be required for the data portion of the
command:

{"criteria":

{

"column":"serial_number",

"component":"Client",

"operator":"qis",

"qualifier":'\"$serial_number\"'

1,
"fields":
[

{
"column":"apple_battery_replace_2015",
""component":"CustomFields"

}

]’

"main_component":"Client"

To continue the scripts, this could be assigned in the script as a variable

macOS script:
query="{"criteria":
{"column":"serial_number","component":"Client","operator":"is","qualifier":'\"S$serial_number\"'},"fields":
[{"column":"apple_battery_replace_2015","component":"CustomFields"}],"main_component":"Client"}'

Windows PowerShell:
Squery = '{"criteria":{"column":"serial_number","component":"Client","operator":"is","qualifier":"' +
$serial_number + '"} "fields":

[{"column":"apple_battery_replace_2015","component":"CustomFields"}],"main_component":"Client"}'

With the server details and JSON configured, it is now possible to read the value with a command:

macOS script:

curl -s -H "Authorization: $auth" https://$server_fqdn:20445/1inv/api/vl/query_result/ --data $query -H "Content-
Type: application/json"

The response may look something like:

{"offset":0,"fields":["CustomFields_apple_battery_replace_2015"],"values":
[["Replaced"]],"filter_results":1,"total_results":1,"version":0}

Windows PowerShell script:

Sheader = @{Authorization=“$auth"}
$api = "https://" + $server_dns + ":20445/inv/api/v1l/query_result/"

Invoke-RestMethod -Method GET -Headers $header -Uri Sapi

Due to this being a Custom Field designed for an Apple replacement programme, hopefully the response will look something like:

{"offset":0,"fields":["CustomFields_apple_battery_replace_2015"],"values":
[["NA"]],"filter_results":1,"total_results":1,"version":0}

Handling JSON response

As noted earlier, since the response is also a JSON block, the desired information is somewhat buried within the response. Windows
PowerShell has tools to directly work with JSON and as such the desired item is more easily attainable.

ConvertFrom-Json

ConvertTo-Json

macOS on the other hand, it would be beneficial to either instal Python and use Pythons tools to extract the response or get crazy with
a tool like 'AWK'.

curl -s -H "Authorization: $auth" \
https://$server_fqdn:20445/inv/api/vl/query_result/ \
--data $query -H "Content-Type: application/json" \
[awk -F "[\ANLI\\NIT' '"{gsub(/\"/,"",$0);print substr($(NF-2), 1, length($(NF-2)))}"'

Response with AWK:

Replaced

Writing a Custom Field
Once the script has continued and actioned anything else desired, it then may be desirable to set the Custom Field to a new value,
which may vary depending upon the outcome of the scripting.

In this example, we will consider the script will be writing back NA to the Custom Field:

current_time=$(date -u +"%FT%TZ")
data='{"CustomFields":{"apple_battery_replace_2015":

{"exitCode":null,"status":0,"updateTime":"'Scurrent_time'","value":"NA"}}}'

curl -X PATCH https://Sserver_fqdn:20445/inv/api/vl/client/Sdevice_id -d "$data" -H 'content-type:
application/json' -s -H "authorization: $auth_key"

Note:

® This is now using the PATCH option, since an already existing value is being altered by the script
® The date is being supplied as a variable to ensure the current time is pushed back with the API JSON data
® This command is referencing 'device_id" in the URL path

Related articles

® How to write to a custom field using the FileWave API
e Command Line APT (v1)
e Anywhere API (v2)

https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.utility/convertfrom-json?view=powershell-7.3
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.utility/convertto-json?view=powershell-7.3
https://kb.filewave.com/books/application-programming-interface-api/page/how-to-write-to-a-custom-field-using-the-filewave-api
https://kb.filewave.com/books/application-programming-interface-api/page/command-line-api-v1
https://kb.filewave.com/books/application-programming-interface-api/page/filewave-anywhere-api-v2

Managing Client States via the FileWave API
What

This article explains how to manage client device states in FileWave, specifically focusing on how to archive and reinstate clients using
the FileWave API. The client state can be defined as Tracked, Archived, Missing, or Untracked, each represented by a numerical value.

When/Why

Changing the state of a client may be necessary during device management tasks such as inventory control, security audits, or when a
device is no longer in active use but needs to be retained in the system for record-keeping. Archiving clients helps in decluttering the
active management list without permanently deleting the device record, allowing for easy reinstatement if needed.

Note that Apple MDM enrolled devices will break their MDM enrollment upon being Archived so they can't as easily be
reinstated simply by changing their state.

How

To change the state of a device, you can use the FileWave API to send a PATCH request that updates the device state. Below is a
script using zsh followed by a PowerShell script to change the state of a device and ensure the model is updated to reflect this change.
The DevicelD can be seen in FileWave Central as shown in the below image or in FileWave Anywhere you will see it in the URL when
looking at a device.

i - e & H [%] o5

Update Model New Client New Group New Smart Group New Cart New Association Client Monitor Customize Columns

Search: Everything Clients Mobile Groups Clear all filters
EI'T.-‘ Slrs Name Enroliment Username D Last Connect Device Name
> [Chromebooks
Oo Fj
el S > [Exclude from Tests 244
,_E‘ Deployments v 3 inbound 252
E;E Win11-Lab4 11367 7/7/23 4:18 PM WIN11-LAB4
[Q.] Associations
L=|= WIN11-LAB3 11365 7/5/23 11:46 PM WIN11-LAB3
Shell script:
#!/bin/zsh

Variables

ServerURL="https://fwjoshlab.filewave.net" # Replace with your server address.
Token="your_token_here" # Replace 'your_token_here' with your actual token.

DeviceID="11365" # Specify the device ID.

NewState="0" # Set the desired state (0: Tracked, 1: Archived, 2: Missing, 3: Untracked).

Update device state

curl -X PATCH "$ServerURL/filewave/api/devices/vl/devices/$DeviceID" \
-H "Authorization: Bearer $Token" \
-H 'Content-Type: application/json' \
-d '{"state":'SNewState'}"'

Update the model to reflect changes

curl -X POST "$ServerURL/filewave/api/fwserver/update_model" \
-H "Authorization: Bearer $Token" \
-H 'Content-Type: application/json'

PowerShell:

PowerShell Script to Manage FileWave Client States

Variables
$ServerURL = "https://fwjoshlab.filewave.net" # Replace with your server address.

https://kb.filewave.com/uploads/images/gallery/2024-04/g3DPzNAke77ybLzf-image.png

$Token = "your_token_here" # Replace 'your_token_here' with your actual token.
$DeviceID = "11365" # Specify the device ID.
SNewState = "0" # Set the desired state (0: Tracked, 1: Archived, 2: Missing, 3: Untracked).

Headers for authorization and content type
Sheaders = @{
"Authorization" = "Bearer S$Token"
"Content-Type" = "application/json"

Body data for changing the state
$body = @f
"state" = $NewState

} | ConvertTo-Json
Update device state
Invoke-RestMethod -Uri "$ServerURL/filewave/api/devices/vl/devices/$DeviceID" -Method Patch -Headers S$headers -

Body $body

Update the model to reflect changes
Invoke-RestMethod -Uri "S$ServerURL/filewave/api/fwserver/update_model" -Method Post -Headers $headers

Output for user confirmation
Write-Host "Device state updated and model refreshed successfully."

Tips:

® Ensure that the Token variable contains a valid authorization token.
® Replace DeviceID and NewState with the appropriate values according to your needs.

Related Links

® FileWave API Documentation - Official API documentation.

® CURL Command Line Tool - Learn more about how to use curl.

Digging Deeper

Understanding the model update process is crucial for ensuring that changes made via the API are reflected in the FileWave
management interface. The update_model API call triggers the FileWave server to reprocess its internal data models, ensuring that
any state changes are accurately shown in the admin console. This is especially important after bulk changes to device states to
maintain consistency across the system.

https://kb.filewave.com/books/application-programming-interface-api
https://curl.haxx.se/docs/manpage.html

Returning Device Information as a JSON

What

The Client Info > Device Details of a particular client, contains a wealth of information that may be useful to repurpose in other
systems (Help Desks, centralised inventory systems, etc). Using the FileWave API, this information could be pulled by alternate
systems or to a file locally on the client

o Since the command refers to Device IDs, it may be necessary to make 2 calls from external systems. The first to obtain Device
IDs and the second to target particular devices based upon their Device ID.

| & When ran through Filesets, Device ID may be sent with the Fileset as either a Launch Argument or Environment Variable

HOW

This information could be returned using either the FileWave Anywhere API or the Command Line RESTful API
| @ Remove the pipe to Python if not installed. This just displays the output as multiple lines instead of one long line.

FileWave Anywhere API from macOS or Linux:

curl -s -H "Authorization: $auth" \
https://$server_dns/api/inv/api/vl/client/details/${device_id}/DesktopClient \
-H "Content-Type: application/json" \
| python3 -mjson.tool

Command Line RESTful API from macOS or Linux:

curl -s -H "Authorization: $auth" \
https://$server_dns:20445/inv/api/vl/client/details/S${device_id}/DesktopClient \
-H "Content-Type: application/json" \
| python3 -mjson.tool

o Note, the commands look almost identical, but just the additional /api at the beginning of the path for the FileWave Anywhere
API call.

The output should look similar to the below, where an appropriate device_id is supplied:

"CustomFields__ldap_username": {
"status": 0,
"type": "string",
"updateTime": "2018-06-21T19:37:23.5858517",
"value": "mdm mdm"
+,
"CustomFields__local_ip_address": {
"status": 0,
"type": "string",
"updateTime": "2018-06-21T19:49:517",
"value": "10.20.30.29"
+,
"CustomFields__malwarebytes_dinstalled": {
"status": 0,
"type": "bool",
"updateTime": "2018-06-21T19:49:517",
"value": false
}1
"CustomFields__po_number": {
"status": 0,
"type": "string",
"updateTime": "2018-06-21T19:49:517",

"value": "54654561"
1,
"CustomFields__property_tag": {
"status": 0,
"updateTime": "2018-06-21T19:49:517",
"type": "string",
"value": "Device Owned by FileWave"
1,
"CustomFields__purchase_date": {
"updateTime": null,
"value": null
})
"CustomFields__school_name": {
"status": 0,
"type": "string",
"updateTime": "2018-06-21T19:49:517",
"value": "Landing Trail Elementary"
1,
"CustomFields__site_description": {
"updateTime": null,
"value": null
}’
"CustomFields__textedit_version": {
"status": 0,
"type": "string",
"updateTime": "2018-06-21T19:49:517",
"value": "1.13"
})
"CustomFields__user_role": {
"updateTime": null,
"value": null
+,
"archived": null,
"auth_username'": "mdm",
"building": null,
"cpu_count": 2,
"cpu_speed": 2759000000,
"cpu_type": "Intel(R) Core(TM) i5-3470S CPU @ 2.90GHz",
"current_ip_address": "10.20.30.29",
"deleted_from_admin": false,
"department": null,
"device_id": "f96b8c66c50b358889ba2fbf2dc53bc21036406a",

"device_manufacturer": "VMware, Inc.",
"device_name": "FUSION-VM1-10.12",
"device_product_name": "VMware7,1",

"enroll_date": "2018-06-17T17:11:08.709785Z",
"enrollment_state": 2,
"filewave_client_locked": false,
"filewave_client_name": "FUSION-VM1-10.13",
"filewave_client_version": "12.8.1",
"filewave_id": 219,

"filewave_model_number": 617,
"free_disk_space": 56772587520,
"is_system_integrity_protection_enabled": true,
"is_tracking_enabled": false,

"last_check_in": "2018-06-21T19:54:31.615710Z",
"last_enterprise_app_validation_date": null,
"last_ldap_username": null,
"last_logged_in_username": "dhadmin",
"last_state_change_date": "2018-06-21T19:50:09.3396092",
"location": null,

"management_mode": 0,

"monitor_id": null,

"operating_system__build": "17B48",
"operating_system__edition": "Desktop",
"operating_system__name": "macOS 10.13 High Sierra",
"operating_system__type": "OSX",
"operating_system__version": "10.13.1",
"operating_system__version_major": 10,

"operating_system__version_minor": 13,

"operating_system__version_patch": 1,

"ram_size": 2147483648,

"rom_bios_version": "VMW71.00V.0.B64.1706210604",
"security__enrolled_via_dep": null,
"security__fde_enabled": false,
"security__firmware_password_change_pending": false,
"security__firmware_password_exists": false,
"security__firmware_password_rom_enabled": true,
"security__hardware_encryption_caps": null,
"security__passcode_is_compliant": null,
"security__passcode_is_compliant_with_profiles": null,
"security__passcode_lock_grace_period": null,
"security__passcode_lock_grace_period_enforced": null,
"security__passcode_present": null,
"security__system_integrity_protection_enabled": true,
"security__user_approved_enrollment": null,
"serial_number": "VMx4NvUkh/Co",

"state": 0,

"total_disk_space'": 85689589760,

"unenrolled": false

If desired, the information could be stored into a JSON file:
curl -s -H "Authorization: $auth" \
https://$server_dns/api/inv/api/vl/client/details/${device_id}/DesktopClient \

-H "Content-Type: application/json" \
| python3 -mjson.tool > /my/path/device_info_${device_id}.json

% The same $device_id variable has been used to define the name of the JSON file also. Alter /my/path for a path of choice.

Obtaining Device IDs

One way to retrieve a bulk list of Device IDs is via an Inventory Query. First make a query to include desired columns, one of which
will need to be Device ID. In the below example Device ID and Device Name have been included as columns for the Fields:

QueryBuilder - Device IDs

Q Mame: Device IDs Main Component: All Devices (]
Comeonan Include Archived Clients

- ActivationLock Bypass Code

» All Devices Criteria [sCILH

» Android Applied Policy
P Android Base Policy

Drop here the fields you want to see in the guery report ; change column order by moving cofumn header.

Device ID Device Name

Once saved, use the details outlined in the FileWave Anywhere Documentation, to locate the ID of this Inventory Query. The query

result may then be used to pull a list of Device IDs. From the below example, set $query_id to the value of the chosen Inventory
Query. Make sure to set $auth to the token and server to your server:

#!/bin/zsh
Shell script for macOS/Linux
$server = "widget.filewave.net"

Stoken = "ezMyxxxM2UyLTNjN2ItNxxxS04ZjQ5LTkxMxxxxzEzODZmNnO=""
$query_id = "65"

curl -s -H "Authorization: S$auth" \

https://$server/api/inv/api/vl/query_result/Squery_id

#PowerShell for Windows

$server = "widget.filewave.net"

S$token = "ezMyxxxM2UyLTNFN2ItNxxxS04ZjQ5LTkxMxxxxzEzODZmNnO=""
Sheader = @{Authorization=“$token"}

Squery_id = "65"

Invoke-RestMethod -Method GET \
-Headers S$header \
-ContentType application/json \
-Uri https://$server:/api/inv/api/vl/query_result/$query_id

https://kb.filewave.com/uploads/images/gallery/2023-07/xAMuf7rBofeoOCm9-image.png
https://kb.filewave.com/books/application-programming-interface-api/page/filewave-anywhere-api-documentation

Related articles

e How to write to a custom field using the FileWave API
e Command Line API (v1)
e Anywhere API (v2)

https://kb.filewave.com/books/application-programming-interface-api/page/how-to-write-to-a-custom-field-using-the-filewave-api
https://kb.filewave.com/books/application-programming-interface-api/page/command-line-api-v1
https://kb.filewave.com/books/application-programming-interface-api/page/filewave-anywhere-api-v2

Sending MDM Commands

What

One of the powerful additional features of FileWave Anywhere, is the ability to send MDM commands to devices. As such, the
FileWave Anywhere API also has this incredible ability.

From, the Swagger Documentation, the following can be seen:

m fdevices/vl/devices/mdm-command devices_vl_devices_mdm-command_create A @

Enqueue an MDM command.
Command options can be specified in 'options' field of the request for the following commands: DeviceLock,

EraseDevice, SetFi VerifyF , UnlockUserAccount, RestartDevice.
Acceptable options for each command are listed in Apple documentation: htips. apple.corr Wcommands and queries
Parameters Try it out
Name Description
data * el
e Example Value | Model
(body)
CreateCommand « {
ids+ o
~ [integer]
commands string
title: Command
. minLength: 1
ort ons Options + {
< x>z string
x-nullable: true
}
}
Responses Response content type | application/json v]
Code Description
204

400

o Note the reference to the device(s) is now by 'ids'. This refers to the Client ID, as oppose to the Device ID, and is always an
Integer.

Example data could look like:

{
"ids": [
737581
1,
"command": "DeviceInformation"
}

& 'ids'is a list of devices, so multiple devices could be targeted in one RESTful API command.

Commands sent by the API will show in the device's Client Info:

Export Current Tab Client Monitor W
Filesets Status _Device Details |[JCTUCISECOl Managed Apps _Installed Apps _Insta
request type status user creation date ~ response date profile id
Devicelnformation not sent 2023-07-05T17:12:46

HOW

This is an example of a RESTful API request that is only available through the FileWave Anywhere API.

Running the command from the Swagger Documentation will show the URL path required to send a command. For example, to lock

https://kb.filewave.com/uploads/images/gallery/2023-07/6GLNb1o1wvXcp6rk-image.png
https://kb.filewave.com/uploads/images/gallery/2023-07/748qJZ5yPtjKonrf-image.png

devices:

macOS and Linux:

mdm_command="'{"ids": [737581, 562620],"command": "DevicelLock"}'

curl -H "Authorization: Sauth" \
=X POST https://${server_dns}/api/devices/vl/devices/mdm-command \
-d "$mdm_command" \
-H "Content-Type: application/json"

Windows Powershell:

$mdm_command = '{"ids": [737581, 562620],"command": "DevicelLock"}"'

Sheader = @{Authorization=“$auth"}

Invoke-RestMethod -Method POST \
-Headers $header \
-ContentType application/json \
-Uri https://${server_dns}/api/devices/vl/devices/mdm-command \
-Body $mdm_command

What commands are available
From the Swagger, there is the following text:

Command options can be specified in 'options' field of the request for the following commands: DevicelLock,
EraseDevice, SetFirmwarePassword, VerifyFirmwarePassword, UnlockUserAccount, RestartDevice.

Acceptable options for each command are listed in Apple documentation:
https://developer.apple.com/documentation/devicemanagement/commands_and_queries

Some commands have been listed, but the link to Apple's documentation shows all possible commands:
& If anew command is released by Apple before it appears in FileWave, the API should be able to trigger that command

To use Apple's documentation, navigate through the pages for the chosen command to locate the 'RequestType'. For example, the
following shows the command to shut a device down is: ShutDownDevice

Device Management Command

ShutDownDeviceCommand.Command

The request dictionary to shut down a device.

(ios10.3+) ((iPad0s 10.3+) ((mac0OS 1013+)

Properties
RequestRequiresNetwork If true, the device must be network-tethered to run the command.
Tether Default: false
boolean

RequestType (Required) The request type to shut down a device.
string Value: ShutDownDevice

https://developer.apple.com/documentation/devicemanagement/commands_and_queries
https://kb.filewave.com/uploads/images/gallery/2023-07/BzWEzMkbnvwEd0LA-image.png

Related articles

e How to write to a custom field using the FileWave API
e Command Line API (v1)
e Anywhere API (v2)

https://kb.filewave.com/books/application-programming-interface-api/page/how-to-write-to-a-custom-field-using-the-filewave-api
https://kb.filewave.com/books/application-programming-interface-api/page/command-line-api-v1
https://kb.filewave.com/books/application-programming-interface-api/page/filewave-anywhere-api-v2

Restarting Devices with API

What

Like to restart many devices in bulk? API can deliver this.

How

The data block for posting restart commands relies upon the 'ids' of devices. This is the Client ID as either viewed in the Client View or
as shown when creating Inventory Queries with Client ID added.

Establish a list of device Client IDs that require rebooting. These should be supplied as a comma separated list of integers. Inventory
Queries could assist with obtaining the list.

Both the API URL and the data block for the API request is different per OS.

In each of the below, an example server names has been supplied 'demo.filewave.ch'. This should be altered to match the
FileWave Server's address as seen in the Mobile tab of Preferences in the FileWave Central App.

Example Server Name:

General Organization Info Mobile Google LDAP Kiosk VPP & DEP Inventory Mail Education Imaging Editor Proxies

MDM Server

Server Address: [demo.filewave.ch]

Android

Example device:

— ~
b jem 03 &7 | [] X 00
Update Model New Client New Group New Smart Group New Cart New Association Client Monitor ~ Customize Columns
Dashboard 7 Search: Everything Clients (NI Groups ‘

D'T.—I Clients Name ~ D
(L1 374473f683289729 54290

Dng Filesets

API URL:

"https://demo.filewave.ch/api/android/restart_devices"

Data Block:
{
"ids": [
54290
]
}

Apple

Example device:

https://kb.filewave.com/uploads/images/gallery/2024-09/Xv6IcCHQhRerETMe-image.png
https://kb.filewave.com/uploads/images/gallery/2024-09/pbtNfB2HM0K1jbVZ-image.png

= o= C7 &7] [%] oS 0

Update Model New Client New Group New Smart Group New Cart New Association Client Monitor ~ Customize Columns

Dashboard 7 Search: Everything clients () Groups ’
0o Clients Name ~ D
[L4 iPado01 54000
Qg Filesets
API URL

"https://demo.filewave.ch/api/devices/vl/devices/mdm-command"

Data Block

"ids": [
54000
1,

"command": "RestartDevice"

Windows

Example device:

— ~.
= & 3 . i (] mr il
Update Model New Client New Group New Smart Group New Cart New Association Client Monitor ~ Customize Columns
Dashboard 4 Search: Everything Clients Mobile Groups |

0o Clients Name &~ D
L DESKTOP-NO5S01D 54028

qg Filesets

API URL

"https://demo.filewave.ch/api/devices/vl/devices/windows-restart"

Data Block
[

"ids": [

54028

Example:

To restart two Apple devices, whose Client IDs are 737581 and 562620, as well as requiring the server's FODN, the API token is also
required. Administrator API Tokens are available from:

® FileWave Central Admin App > Manage Administrators > [select a user] > Application Tokens (tab)

@ Tokens are unique per user and each user may have multiple tokens

https://kb.filewave.com/uploads/images/gallery/2024-09/FKYOSZGhCllGBiGK-image.png
https://kb.filewave.com/uploads/images/gallery/2024-09/qqRWYmY6QYemWtjT-image.png

User details Permissions VPP tokens Application tokens = TeamViewer
1token(s) Q Search

Name ~ | Token
Default Token {9ff2d06a-85aa-4697-8463-5c0e728c8127}

Token name: ' pefayit Token

Description: This default token is required for FileWave Admin and cannot be deleted.

Token: {9ff2d06a-85aa-4697-8463-5c0e728c8127}

Regenerate token
B CHNCEEE T e 2ImZj JkMDZhLTgTYWEtNDY 5Ny04NDYzLTViMGU 3Mjhj g o
Script example: curl -s -k -H "Authorization: ezImZjJkMDZhLTgTYWEtNDY IJODEYN30=" https://demo.filewave.ch:
20445/inv/api/v1/component/ Copy Link Location
Select All

Different tokens could be used for different tasks. Consider creating a user specific for API or multiple API users, depending
upon requirements, and limit each API user's 'Permissions' to only those items required to achieve the API request(s).

@ Alter the 'ids' list, server FODN and API Authorisation Token as required

macOS/Linux:

mdm_command="{"1dds": [737581, 562620],"command": "RestartDevice"}'

curl -H "Authorization: ezlmZjJkMDZhLTglYWEtNDY5Ny®4NDYzLTVjMGU3MjhjODEYN30=""\
-X POST https://demo.filewave.ch/api/devices/vl/devices/mdm-command \
-d "$mdm_command" \
-H "Content-Type: application/json"

Windows:

Smdm_command = '{"ids": [737581, 562620],'"command": "RestartDevice"}'
Sheader = @{Authorization=“ez1lmzZjJIkMDZhLTglYWEtNDY5Ny®4NDYZzLTVjMGU3MjhjODEYN30=""}

Invoke-RestMethod -Method POST \
-Headers S$header \
-ContentType application/json \
-Uri https://demo.filewave.ch/api/devices/vl/devices/mdm-command \

-Body $mdm_command

https://kb.filewave.com/uploads/images/gallery/2024-09/RaeAD70OGhcTLRzb-image.png

