Running Built-in PowerShell Commands with
Custom Fields

In Filewave when using custom fields for PowerShell scripts the commands are run in a 32-bit environment. Some built-in PowerShell
commands require 64-bit to work. In order to run the commands you need to modify the command to launch the correct PowerShell
environment.

An example of this is with the below PowerShell command to list the local Admin accounts on a given device. The screen shot below
shows how you would normally setup the Custom Field in your environment. The issue is that this command needs to be run in a 64
bit environment while FileWave defaults to 32 bit when executing the commands.

get-localgroupmember -group 'Administrators' | select Name

Client Script

This script will be run on the client side on verification. The output of the script will be captured and will serve as the value for the field. The default value will be
assigned until the script is executed. If the script fails during client association, the default value will be used.

Script type: = PowerShell Execution Environment...

FileWave client will execute this script. The output will be used as the value of the custom field.

#
Below is an example of how to read the value of one ENVIRONMENT VARIABLE in your script:

$my_var = $Env:ENV_VAR_NAME

#
get-localgroupmember -group 'Administrators' | select Name
exit @

Since this is the case you will now need to modify the command choosing to run in 64 bit. To do this you would add
"C:\Windows\system32\windowsPowerShell\v1.0\powershell.exe" to the command and run it as a Bat script instead of PowerShell in
the Custom Field. I posted the code that would work with the Custom Fields below as well as a screen shot of the correct setup.

C:\Windows\system32\windowsPowerShell\v1l.0\powershell.exe "get-localgroupmember -group 'Administrators' | select
Name"
exit 0

Client Script

This script will be run on the client side on verification. The output of the script will be captured and will serve as the value for the field. The default value will be
assigned until the script is executed. If the script fails during client association, the default value will be used.

Script type: = Bat Execution Environment...

@echo off

REM FileWave client will execute this script. The output will be used as the value of the custom field.
REM

REM Below is an example of how to read the value of one ENVIRONMENT VARIABLE in your script:

REM set my_var=XENV_VAR_NAME%

C:\Windows\sysnative\windowsPowerShell\vl.@\powershell.exe "get-localgroupmember -group 'Administrators' |
select Name"

exit @

Another method to execute an entire script in the native environment (32bit on 32bit or 64bit on 64bit) is as follows:

HESHHHAH A AR AR H AR A R R R R R R R R R
#If Powershell is running the 32-bit version on a 64-bit machine, we
#need to force powershell to run in 64-bit mode
HESHHASHH A HA SRR R AR H AR AR R A R R R R R R R R R R
if ($env:PROCESSOR_ARCHITEW6432 -eq "AMD64") {
#write-warning "Take me to 64-bit..... "
if (SmyInvocation.Line) {
&"S$env:WINDIR\system32\windowspowershell\vl.0\powershell.exe" -NonInteractive -NoProfile
$myInvocation.Line
}else{
&"$env:WINDIR\system32\windowspowershell\vl.0\powershell.exe" -NonInteractive -NoProfile -file
"$(smyInvocation.InvocationName)" Sargs
}
exit $lastexitcode

}

Main script

Uncomment the next line to prove that we are always in 64bit
#[Environment]::Is64BitProcess

Your 64bit script here.

HAHAHAHAHAH A AR AR ARG HAHAHAHHH AR AR ARG HAHAH AR AR AR AR AR AR H AR AR R R A

#End
HEHAHAHAHHHHHHHH AR HAHAH AR R H A R H R R A R H A R R

Related Content

® Scripting Languages supported in FileWave

“Revision #1
*Created 2 July 2023 14:12:47 by Josh Levitsky
/'Updated 2 July 2023 14:33:05 by Josh Levitsky

https://kb.filewave.com/books/filewave-general-info/page/scripting-languages-supported-in-filewave

