3.0 Advanced Dashboard
Primer

Aren't you an intrepid explorer! Look at you jumping right to the advanced section! Well, we are glad you are here. In this section we'll
be looking at how you can create much more complex dashboard content.

As soon as you want to go beyond supplied panels, or direct data from inventory queries, then things are going to get a bit more
complex. However, don't be daunted! We are going to give you the building blocks here for building complex and very meaningful
aggregate data from FileWave sources.

Please see the articles below for the elements we'll build on:

® 3.1 Aggregating Data
® 3.1.1 Grouping Data Using Prometheus

® 3.1.2 Testing the Prometheus Scrape

® 3.1.3 "Exploring" Your New Aggregate Data
® 3.1.4 Creating your Data Panel

3.2 Extra Metrics

file:///tmp/knp_snappy66dce3df04b497.97680357.html#page-333
file:///tmp/knp_snappy66dce3df04b497.97680357.html#page-334
file:///tmp/knp_snappy66dce3df04b497.97680357.html#page-335
file:///tmp/knp_snappy66dce3df04b497.97680357.html#page-336
file:///tmp/knp_snappy66dce3df04b497.97680357.html#page-337
file:///tmp/knp_snappy66dce3df04b497.97680357.html#page-338

3.1 Aggregating Data

What

Up until now, we have been talking about the capability of the FileWave dashboard to show data. We have looked at pre-built
examples, and done a small amount with data from an inventory query. But the real power in the dashboard is the ability to aggregate
(or summarize) data.

When/Why

Let's consider a new deployment of Java to the environment: We can create a report that shows us every client, and every version of
Java on those clients, but that doesn't give an easy overview of how the rollout from build 183 to build 196 is going. But, if we could
take that same data, and count the number of clients with each version and represent that in a chart, then that would give us the exact
picture we might be looking for. This aggregation of data is a very powerful tool.

How

So, we know how to create new dashboards and panels, but how do we actual get aggregated data over to our (grafana) dashboard?
The answer to that lies in using Prometheus and configuring a scrape file for collecting and aggregating that data.

3.1.1 Grouping Data Using Prometheus

What

In order to do summary reporting, we need to leverage the power of Prometheus.

When/Why

Anytime we want to do something like report on a rollout or general status, we are going to want to summarize a report. We will
accomplish this by using a Prometheus config file on the FileWave server itself.

How

The configuration (or yml files) that we'll create will always be placed in the /usr/local/etc/filewave/prometheus/conf.d/jobs/https
directory on the FileWave server. Anything placed in this directory will automatically be read by Prometheus, and the data presented
to our dashboard. (Example yml files can be found in /usr/local/etc/filewave/prometheus/conf.d/jobs)

The syntax of these files is quite picky, so it is best to copy an existing one, and then modify it. It may seem complicated, but we are
always going to do the following steps:

Step Example

1. Place a new (or copied) yml file
into /usr/local/etc/filewave/prometheus/conf.d/jobs/https with a meaningful T Y —
name.

ache apache 54 Aug 11

apache apache 91 Aug 10
. 1root root 141 Aug 11
X. 1 apache apache 405 Aug 10
osefu https]s

2. Edit the new file to specify the following 3 things:

* The inventory query (report) to use

* The field you want to count by...device_id is almost always a good one if
reporting by device

* The field you want summarize (aggregate) by...in this case, the filewave
client version

3. Once your report is created, the report id to use is most easily accessed
through the webadmin. Note that the fields you want to use for aggregation
must be in the report.

Note that the fields you use in

the YML file MUST be in the
report itself

4. Get the definition for the fields you want to use from the APL...the easiest
way is to do a curl from the command line like this:

bash
curl -s -k -H "Authorization: <Base64 API Token>"
httos://<mv.server.address>:20445/inv/api/vl/query/<report_id> |
python -mjson.tool

Make sure and substitute in your values for the <Base64_API_Token>,
<my.server.address> and <report_id>

You'll get a response that includes the component and the field names as
shown at right

query/Qol | python -mjson.tool
{
"criteria": {
"expressions": [

"column": "filewave_client_version",
"component": "DesktopClient",
"operator": "contains",
DeupilsgraiEety B0
}
1,
Dilerple?s Oty
3,
"favorite": false,
"fields": [
{
"column": "device_name",
"component": "Client"

"column": "filewave_client_version",
"component": "DesktopClient"

"column": "device_id",
"component": "Client"
B

"group": @,

iy gl

"main_component": "Client",
"name": "FileWave Client Version"
"version": 3

4. Edit the YML file to specify the 3 items as they match your report definition,
then save the file. If using the sample file, remember to take out the KellertB0 — centos@fw:/ustflocalletc/filewave/prometheus/cont.d/jobs/https — ssh centos@fw.beta filewave....
comment # at the beginning of each line. Example at right: barocts]

/dashboard_datasour ce/prometheus/41/DesktopClient. filenave_client_version/Client.device_id"

Within a minute or two of creation of the file, the data should be available in your dashboard for a new panel.

3.1.2 Testing the Prometheus Scrape

What

Assume for a moment you made a typo in the yml file, or some other problem occurs and your new scrape isn't showing in
Grafana...how can you see what is going on?

When/Why

Thankfully there is a service running that allows you to see the status of all Prometheus scrapes, and will usually give you an idea
about what is going on. We can check a web page to get this detailed information.

How

The webpage/port in question though is NOT open by default to external systems and we must access it in a special way. If the port
were open, we would normally just go to https://my.server.address:21090/targets. But, to work around the port not being opened,

we can do the following (from terminal, macOS):

ssh -L 8000:localhost:21090 user@my.server.address

Alternatively, if you are on a Windows device, you can do the same thing through Putty by configuring a "tunnel" with local port of your
choosing redirecting to the FileWave server:

&% PUTTY Configuration ? ps

Category:

- Keyboard ~ | Options controlling SSH port forwarding
. Bell

- Features
=-Window D Local ports accept connections from other hosts
-- Appearance []Remote ports do the same (SSH-2 only)

- Behaviour
- Translation
[H-Selection L8000 my.server.address: 21090
- Colours
=-Connection

-.Data Add new forwarded port
mey

- Telnet Source port Add

- Rlogin
£-558H Destination |my.sewer.address:210‘:}[} |

-~ Kex @ Local () Remote () Dynamic

- Host keys
e (@ Auto (O IPv4 ()1IPve

[#- Auth

~TTY

- A1

- Tunnels

- Bugs

- More bugs W

Port forwarding

Forwarded ports: Remaove

About Help Open Cancel

These configurations redirects our requested traffic back to port 8000 on our local device, based on the ssh connection being
established. The result is that in our own browser then, we can go to http://localhost:8000/targets to see the scrape data.

See below how I have a mistake in one of my jobs (query 153 doesn't actually exist):

https://my.server.address:21090/targets,
http://localhost:8000/targets

® O @® 7 ppplications - Grafana X & Prometheus Time Series Colle: X 4

& C @ localhost:8000/targets w O R o [+]
3 Apps Calendar () ProsServices B Sugar (@ Foundry [RJ PS Queue Calendly ¥ FileWave seafile [Analytics [Roadmap Jenkins Other Bookmarks
Prometheus

ndpoint tate abels ast Scrape Duration Error

https://localhost:20443/dashboard_dat 'UP 11.211s ago 10.19ms

asource/prometheus/association_statu job="dynamic-inventory"
s

extra-config-http (1/1up) EXEY

Scrape
Endpoint State Labels Last Scrape Duration Error
http://localhost:8000/metrics uP 8.403s ago 4.219ms
extra-config-https (2/3 up)
Scrape
Endpoint State Labels Last Scrape Duration Error
https://localhost:20443/dashboard_dat UNKNOWN Never Os
asource/prometheus/153/OperatingSys
tem.type/Client.device_id
https://localhost:20443/dashboard_dat [UP 11.689s ago 11.856ms
asource/prometheus/41/DesktopClient.
filewave_client_version/Client.device_id
https://localhost:20443/dashboard_dat |UP 5.797s ago 10.47ms
asource/prometheus/53/OperatingSyst

em.type/Client.device_id

filewave-django (1/1up) w

3.1.3 "Exploring"” Your New Aggregate Data

What

We don't have to jump right in to creating a proper reporting panel for our new data. Many times simply looking at the data itself can
be helpful.

When/Why

It is best to always take a look at your resultant data just to give it a sanity check before you start doing formal reporting. The easiest
way to do this is simply to use the "Explore" function within Grafana.

How

The data we previously aggregated from Prometheus will always be presented in the form of filewave_inventory_query_id, where id is
the id of the report you based the data upon. You'll see below how we can explore that data:

C} b- Loading

Notice that the data are no longer 5 individual records, but now 3 records, because we have 3 different versions of the FileWave client
between these endpoints. That data is perfect for us to create our very own pie chart.

3.1.4 Creating your Data Panel

What

Now that we have our data being passed over to the dashboard, and we know how to access it, we can build a panel using the
visualization that fits our data.

When/Why

Many times, when the data we are presenting is representing the "whole" of an environment, then we might choose to use a pie chart
to represent that data, and usually that data is presented in a snapshot form (i.e. only the latest data). At other times, when we want
to watch the progression of something, such as number of enrolled devices, we might want to look at that data as it progresses over
time in a line graph.

How

Creating this new panel isn't much harder than our previous example, but there are a few new things you'll notice in the overview
below:

C} .- Loading

There are lots of options you can play around with in the different visualizations to customize the output (we won't attempt here to
document that). Note though that you can reference data elements for things like the legend. In this case putting
{{genericdesktopclient__filewave_client_version}} in as the legend format makes the legend use the much more meaningful field
value.

One more note: We chose the "Instant" option in this case because we only want to see the last version of the data for this particular
panel (and almost always "instant" for a pie chart). However, the data really is time-series data, so a bar or line chart could show
these data elements changing over time to watch progression.

3.2 Extra Metrics

What

We learned in the 3.1 section how to build our own custom panels. "Extra Metrics" is an independently built tool to automate creation
of a few reporting elements for us without doing it manually. This solution is NOT directly supported by FileWave, but you may find it
useful in your environment.

When/Why

"Extra Metrics" gives data on applications, and generally on patch status of your devices. The patch status elements are hard-coded,
but the application versions panels are driven by dynamic reports that you can tweak to fit your needs. All information for installation

and upgrade of this solution is found here: https://pypi.org/project/filewave-extra-metrics/#description

How

In this example, we have Extra Metrics installed, and are adding a new report to view Firefox information on macOS devices.

Q .- Loading

https://pypi.org/project/filewave-extra-metrics/#description

