Smart Groups, Inventory and Application
Version Numbers

Description

By default, FileWave treats software version numbers as strings. This is because it is legitimate for software versions to contain
characters as well as numbers. The below script is designed to assist with Smart Group analysis and Inventory Reporting.

Information

The following script will attempt comparisons between a supplied software version and the version as shown from the bundle
Info.plist file. If the version contains characters though, the script will exit.

Output should be one of:

Newer - version on device is newer than supplied version to compare
Outdated - version on device is older than the supplied version to compare
Current - version is the same as the supplied version to compare

NA - Supplied Application path was not found on device

Uncomparable - Non numerical characters were found

The script accepts three Launch Arguments:

1. App path
2. Version to compare
3. Key/Value item to collect from Info.plist

Item 3, if not supplied, defaults to: CFBundleShortVersionString

Directions
Create a Custom Field.

Name the script, e.g. Compare Chess Version
Provided By: Client Script

Data Type: String

Client Script Type: macOS Shell

Optional: Assign to all devices

Launch Arguments:

1. /Applications/Chess.app
2. 3.15
3. CFBundleShortVersionString

https://kb.filewave.com/books/custom-fields/page/custom-fields

@] Edit Execution Parameters - Platform macOS
Launch Arguments Environment Variables

[Applications/Chess.app
3.15

CFBundleShortVersionString

[
|

+ ~

The values of the command line arguments are set just before the script execution.
To use an inventory field value to set a command line argument value, use the syntax
%FIELD_NAME%.

For instance: foo-%asset_tag%

Cancel Save

Paste the following into the script window:
#!/bin/bash
Compare version numbers of apps for Inventory Reporting and Smart Groups
V1.0 -May 2019, sean.holden@filewave.com

$1 - Application path, e.g: /Applications/Chess.app

$2 - Version to compare against
$3 - Version string, e.g.: CFBundleVersion, CFBundleShortVersionString

B

Return Newer, Outdated, Current, NA or if non-numerical characters are used Uncomparable.
app_path="$1"

if [! -x "Sapp_path"]
then

echo NA

exit 0
fi

dotted_check_version=$2

if [["$3" == "" 1]

then
Default if not supplied: CFBundleShortVersionString"
version_string="CFBundleShortVersionString"

else
version_string="$3"

fi

dotted_installed_version=$(defaults read "${app_path}/Contents/Info.plist" "$version_string")

if [["$dotted_installed_version" =~ [A-Za-z] 1]
then

echo "Uncomparable"

exit 0
fi

function convertVersion {

https://kb.filewave.com/uploads/images/gallery/2023-07/7Mog3ILij34PZmI0-image.png

OLDIFS=$IFS
IFS='.' read -r -a array_add <<< "s$1i"
IFS=SOLDIFS

function compareVersion {

array_counter=0

while [$# -gt 0]

do

compare_to_me=${check_version[$array_counter]}
if [[$compare_to_me == "" 7]]
then

compare_to_me=0
fi
if [$1 -1t Scompare_to_me]
then

echo "Outdated"

break
fi
if [$1 -gt $compare_to_me]
then

echo "Newer"

break
fi
array_counter=$((array_counter + 1))
shift
if [$# -eq 0]
then

echo "Current"
fi

done

convertVersion "$dotted_installed_version"
declare -a 1installed_version=("${array_add[@]}")
convertVersion "$dotted_check_version"

declare -a check_version=("${array_add[@]}")

while [${#check_version[@]} -gt ${#installed_version[@]}]
do

installed_version+=('0")
done

compareVersion ${installed_version[@]}

exit 0

Save and then create a Smart Group as required.

“Revision #3
* Created 11 July 2023 20:39:12 by Josh Levitsky
/' Updated 21 July 2023 20:54:00 by Josh Levitsky

https://kb.filewave.com/books/filewave-central-anywhere/page/using-queries-to-create-smart-groups

