Script Best Practices

Description

Tips and tricks for running Filesets with scripts

Don't put passwords in scripts

The scripts are stored locally on devices. For security reasons, usernames and passwords should not be included within the body of
scripts.

For example:
Example: password in command

somecommand -u "USERNAME_HERE" -p "PASSSWORD_HERE"

Additionally, DO NOT use Launch Arguments to provide passwords to scripts. Launch Arguments are visible in the process list during
script execution. Instead supply the username and password as Environment Variables:

" unsecure_la.sh

Kind: File
Created: 16/09/2020 09:51 am
Modified: 16/09/2020 09:51 am
Permissions ACLs Verification Flags

Execution Control

Execute once when activated

Interactive (ignored in non Windows™ clients)
© Non-interactive (background)

Wait for executable to finish
Waitfor: nfinite

©

Launch Arguments [IRLUTLTTIRETELTE

secure_password_leaked

The values of the command line arguments are set just before the script execution.
To use an inventory field value to set a command line argument value, use the syntax
%FIELD_NAME%.

For instance: foo-%asset_tag¥%

Mote: Log files will be collected for synchronous non-interactive scripts only

(5] click the loc to take control of this Fileset

J unsecure_la.sh

Kind: File
Created: 16/09/2020 09:51 am
Modified: 16/09/2020 09:51 am

Permissions ACLs Verification [ESTEHEERY Flags

Exacution Control

@ Execute once when activated

Interactive (ignored in non Windows™ clients)
O Non-interactive (background)

Wait for executable to finish
Waitfor: infinite

Launch arguments IR

Variable ~ Value
my_pass password_secure

username super_admin

+

The values of the environment variables are set just before the script execution.
To use an inventory field value, use the syntax %FIELD_NAME%.

For instance: MY_VAR: foo-%asset_tagh

Note: envi variable s are case | itive in Windows.

Note: Log files will be collected for synchroncus non-interactive scripts only

(5] ciick the lock to take contral of this Fileset

During script execution, the Launch Argument is seen:

Example: Visible Password

$ ps —ef | grep secure

0 73010 155 0 9:5lam ?? 0:00.01 /bin/zsh /var/scripts/532417/unsecure_la.sh

secure_password_leaked

Using the example Environment Variables from the image, they would be addressed as:

oS Script Type
macOS shell
Windows Powershell
Batch
Batch
mac0S & Windows Python

Command

somecommand -u $username -p
Smy_pass

somecommand -u $Env:username -p

$Env:my_pass

somecommand -u %username% -p

%my_pass%

In order to not transmit the password to a log file
accessible on the device, add @echo off before
the line containing %my_pass% and @echo on as
the next line. Example:

@echo off

%SystemRoot%)\System32\Reg.exe ADD
"HKLM\SOFTWARE\Microsoft\Windows
NT\CurrentVersion\Winlogon" /v
"DefaultPassword" /d "%my_pass%" /t REG_SZ /f
@echo on

import os

os.getenv('username')

os.getenv('my_pass')

Keep Requirements Scripts Small

Requirements scripts are pulled from a fileset and sent before the remainder of the fileset.

It behaves this way because if a requirements script fails, there is no point in downloading and installing the remainder of the fileset.
£ Afileset whose requirements have failed will not even show up in the kiosk.

Where possible, avoid piping commands. This increases overhead on the scripts. If pipes are required, try to reduce the quantity of
pipes. If nothing else, this makes the scripts easier to read.

$ time system_profiler SPHardwareDataType | grep "Model Identifier" | awk '{print $NF}'

MacBookProll,4

$ system_profiler SPHardwareDataType | awk '/Model Identifier/ {print $NF}'
MacBookProll,4

And other commands may achieve the same result more efficiently without the need to pipe.

$ time system_profiler SPHardwareDataType | grep "Model Identifier" | awk '{print $NF}'
MacBookProll,4

real Om0.192s

user Omo.071s
sys Omo.049s

$ time sysctl -n hw.model
MacBookProll,4
real Omo.004s

user Omo.001s
sys Omo0.002s

Consider this for all scripts beyond just requirement scripts.

Leverage Dependencies and Scripts

If there is a script that several filesets will need, don't paste the same script into each one. Create an empty fileset with that script,
and make the other filesets dependent upon it.

Log Script Output to the Client Log (macQOS only)

Have a script that needs to write details steps to a log?
Want a quick status of the script.
Have a script write to the client log.
macOS / Linux
#!/bin/bash

exec 1>>/var/log/fwcld.log
exec 2>>/var/log/fwcld.log

. rest of script

You can then use Client Monitor and pull and view the log as things are happening.

© windows log file is locked such that additional appending may not take place

Testing Scripts

Scripts run by FileWave are run by root or System. As such, scripts should be tested using the same user context to prevent erroneous
results. Many commands will yield the same result regardless, but this cannot be relied upon.

Windows

E.g. Run the following on a Windows 10 Professional system locally through Powershell as either user or 'Run As Admin' will see the
following result:

(Get-ItemProperty "HKLM:\SOFTWARE\Microsoft\Windows NT\CurrentVersion").EditionId

Professional
However, as a Custom Field running the same script, the result is surprisingly different:

(Get-ItemProperty "HKLM:\SOFTWARE\Microsoft\Windows NT\CurrentVersion").EditionId
Enterprise

This is because Windows is providing a different answer based upon either the user running the script or may provide different
responses based on 32-bit or 64-bit.

Take a look at Getting a CMD prompt as SYSTEM in Windows Vista and Windows Server 2008 for details about running scripts as

System. Note, that by default, this will start an executable as 64-bit, for native 64-hit 0OS. However, the above example is because
the FileWave fwcld process is calling the 32-bit version of PowerShell.

& PsTools: This relies on downloading and installing, onto the test machine, PsTools.

To mimic this experience, consider the guide to starting the CMD. When launching an executable, like PowerShell, the 32-bit version
would need to be referenced. For example:

PSEXEC -i -s -d C:\Windows\SysWOW64\windowsPowerShell\vl.0\powershell.exe
For CMD, the equivalent would be:
PSEXEC -1 -s -d %windir%\SysWow64\cmd.exe

Similarly, when attempting to run some commands, it may be necessary to ensure Windows is using the correct version of a binary
with the 'sysnative' redirect. An example would be Bitlocker's 'manage-bde.exe'. To use this in a Fileset, try the following:

C:\Windows\sysnative\manage-bde.exe -status
If you have a requirement to run a particular command through the 64-bit version of Powershell this can be achieved as follows:

If ([IntPtr]::Size x 8 -ne 64)

{
C:\Windows\SysNative\WindowsPowerShell\vl.0\PowerShell.exe -File $MyInvocation.MyCommand.Path
}
Else
{
Add code here
}
Example

Create a new admin account

Two Fileset Environment Variables would be supplied. To add the user 'rstephens’ with the password 'filewave'

Variable Value
username rstephens
password filewave

Parameters may be supplied, that can then be added to the execution of Powershell from within the script:

Param (

[string]$MyUsername = SEnv:username,
[string]$MyPassword = S$SEnv:filewave

https://blogs.technet.microsoft.com/askds/2008/10/22/getting-a-cmd-prompt-as-system-in-windows-vista-and-windows-server-2008/
https://docs.microsoft.com/en-us/windows/desktop/winprog64/file-system-redirector
https://docs.microsoft.com/en-us/sysinternals/downloads/pstools

If ([IntPtr]::Size * 8 -ne 64)
{

C:\Windows\SysNative\WindowsPowerShell\vl.0\PowerShell.exe -File $MyInvocation.MyCommand.Path -MyUsername
$MyUsername -MyPassword S$MyPassword

}
Else

{
(New-LocalUser -AccountNeverExpires:$true -Password (ConvertTo-SecureString -AsPlainText -Force $MyPassword)
-Name $MyUsername | Add-LocalGroupMember -Group administrators)

}

Troubleshooting PowerShell scripts

As a best practice, always check the "Disable Windows 32-bit on Windows 64-bit redirection" checkbox in the Properties tab for your
fileset. This ensures that any scripts in the fileset will be run in a 64-bit session and built-in Windows executables triggered by those

scripts will call the 64-bit versions. A common reason for why your script might not be performing the expected results could be due

to 64-bit Only Modules or Cmdlets: Some PowerShell modules or cmdlets are available only for the 64-bit version of PowerShell. If a
script relies on these 64-bit modules, it must run in a 64-bit shell.

Fileset Name: myPowershellScript
Revision: <default> (Initial Revision) S Manage Revisions
Properties Requirements Dependencies Delete Files Kiosk

Requires Reboot

Ignore Permissions on Existing Folders

Installation Priority:

Lowest Highest

Verification settings

® Self Healing
Download If Missing

lgnore At Verify (Left Behind)

» Disable Windows 32-bit on Windows 64-bit redirection

macOS

On macOS, running commands as sudo is not necessarily the same as actually becoming root.

Root vs As Root
E.g. Run the following commands to evaluate the local variable $HOME, once using sudo and once as root.
$ whoami

auser
$ sudo echo $HOME

https://kb.filewave.com/uploads/images/gallery/2024-05/k1HqXU7i9e7igd0O-screenshot-2024-05-17-at-11-54-12-am.png

/Users/auser
$ sudo su -
$ whoami
root

$ echo $HOME

/var/root

Paths

Similarly, the paths used to locate executable files will differ, since FileWave is a service ran as root and is not the root account. On an
example device:

User Account Root Account FileWave Client
% echo $PATH | tr ":" "\n" % echo $PATH | tr ":" "\n" /usr/bin
/opt/homebrew/bin /usr/local/bin /bin
/opt/homebrew/sbin /System/Cryptexes/App/usr/bin Jusr/sbin
/var/root/.cask/bin /usr/bin /sbin
Jusr/local/sbin /bin
/Jusr/bin /usr/sbin
/bin /sbin
Jusr/sbin /Applications/VMware
/sbin Fusion.app/Contents/Public

/Library/Apple/usr/bin
/var/run/com.apple.security.cry
ptexd/codex.system/bootstrap/us
r/local/bin
/var/run/com.apple.security.cry
ptexd/codex.system/bootstrap/us
r/bin
/var/run/com.apple.security.cry
ptexd/codex.system/bootstrap/us
r/appleinternal/bin

As such, consider always using the full path within a script to an executable, to be explicit, and ensure the executable is found.

For example, it can be seen from the above that homebrew is installed.

% 1ls -al /usr/local/bin/brew
lrwxrwxrwx 1 root _developer 28 Mar 23 2023 /usr/local/bin/brew -> /usr/local/homebrew/bin/brew

Running the following command would work as the user or root account, but would fail through FileWave, since the FileWave Client
does not search /usr/local at all for executables:

brew -v
To ensure the script works and targets the correct brew, the full path should be entered:

/usr/local/bin/brew -v

Plist

It is common to see plist files edited with the 'defaults' command. However, this command is unique when it comes to ownership and
permissions of files. The 'defaults' command will both take ownership and change permissions of files when used to write to plist
files:

$ whoami

root

$ 1s -al /tmp/example_plist.plist

-rw-r--r-- 1 rstephens staff 66 Feb 28 10:03 /tmp/example_plist.plist
$ defaults write /tmp/example_plist Label example_plist

$ 1s -al /tmp/example_plist.plist

—rw-———=-- 1 root wheel 66 Feb 28 10:05 /tmp/example_plist.plist

As such, ensure to add a repair to scripts to reset permissions and ownership after the command has been used or consider using the
following command instead (Note the full path is required if /usr/libexec is not in the paths list:

/usr/libexec/PlistBuddy

Related Content

e Custom Fields

® Filesets / Payloads
e Fileset / Payload Script Exit Code Status

“ORevision #9
*Created 2 July 2023 14:43:06 by Josh Levitsky
/'Updated 19 July 2024 15:27:19 by Jared Jones

https://kb.filewave.com/books/custom-fields/page/custom-fields
https://kb.filewave.com/books/filesets-payloads
https://kb.filewave.com/books/filesets-payloads/page/fileset-payload-script-exit-code-status

