Desktop A-Game

® Desktop Fileset Timed Events

e Apple Profiles & Dependencies

® Policy Loops
e Updating 3rd Party Software

® Un-install Filesets
e Inventory Items in Scripts
® Script Logging

file:///tmp/knp_snappy68854e29620ae9.97919663.html#page-941
file:///tmp/knp_snappy68854e29620ae9.97919663.html#page-943
file:///tmp/knp_snappy68854e29620ae9.97919663.html#page-944
file:///tmp/knp_snappy68854e29620ae9.97919663.html#page-945
file:///tmp/knp_snappy68854e29620ae9.97919663.html#page-946
file:///tmp/knp_snappy68854e29620ae9.97919663.html#page-952
file:///tmp/knp_snappy68854e29620ae9.97919663.html#page-954

Desktop Fileset Timed Events

Description

Filesets have the option to set an activation time, but what about items based upon timing of day, for example, rather than a dedicated
date.

Policy Blocker Scripts are really designed to pause management of clients. However, with some clever use, a Policy Blocker Script can

provide us with some assistance. This script type runs every 5 minutes on clients. Although the intention is to pause management
until the script reports an exit status of 0, the 5 minute continual trigger can be leveraged.

Extending this with Custom Fields, it is possible to build out a desired outcome.

Ingredients

® One (or more) Custom Fields; 3 provided - Active Time Custom Fields.customfields
® Policy Blocker Scripts

macO0S Windows

Policy - Timed Event macOS.fileset.zip Policy - Timed Event Windows.fileset.zip

Directions

® Download and import the provided Custom Fields
® Download and import the appropriate Fileset(s) (macOS and/or Windows)

Alter the Custom Fields values for Inactive and Active times to suit. Time is set using hours, minutes and seconds. E.g.

Desired Time (HH:MM) Custom Field Value (HHMMSS not including leading zeros)
09:30 93000

12:55 125500

18:00 180000

If changing the Custom Field value for a device which is already running the policy, 2 subsequent Model Updates will need to
be received by the client, if looking for a more ‘immediate’ result. The blocker script holds the client until success. This

A means, during a Model Update, the blocker will run before the new Custom Field Value will be read by the device. As such,
only after a subsequent update (or inventory) will the blocker script be aware of the new Custom Field value. Custom Fields
will naturally update on devices with inventory, but this is less frequent.

Time Order

Times can be either way around.

Examples:
Consider working hours to begin at 08:30 and end at 18:00

Example 1

An item should only be considered outside of standard working hours.

® Disable Active Time: 83000
® Enable Active Time: 180000

https://kb.filewave.com/uploads/images/gallery/2024-07/bUD8dOsEWuj4trrN-image.png
https://kb.filewave.com/books/filesets-payloads/page/filewave-fileset-types#bkmrk-policy
https://kb.filewave.com/attachments/376
https://kb.filewave.com/attachments/377
https://kb.filewave.com/attachments/378

Display Name Internal Name Field Type Association Count Field Value

Enable Active Time enable_active_time Integer All Clients 180000
Disable Active Time disable_active_time Integer All Clients 83000
Example 2

Alternatively, an item should be considered during working hours:

® Enable Active Time: 83000
® Disable Active Time: 180000

Display Name Internal Name Field Type Association Count Field Value
Disable Active Time disable_active_time Integer All Clients 180000
Enable Active Time enable_active_time Integer All Clients 83000

Imported Custom Fields are disabled for all devices by default. Once tested, consider using the option to assign to all devices for each
Custom Field imported. The file provided contains all 3 Custom Fields.

Field Details
Name
Active Time

Internal Name

Using internal name the field can be referenced in other parts of FileWave

custom_bool 01
Description

Provided By
Defines how the field value shall be populated

Client Command Line ~

Assigned to all devices

Smart Groups

A third Custom Field holds a true/false value. This value may be used with a Smart Group query, to determine if an item should be
associated at this time or not.

This Custom Field is set to use custom_bool_01. If this is already in use, an alternate Custom Bool number should be utilised
instead. This is editable through the Scripts Environment Variables.

The script uses the following method to set these values.

https://kb.filewave.com/books/custom-fields/page/add-filewave-custom-inventory-fields-remotely-using-a-fileset

Example

An update to Firefox needs to occur after 17:00 or before 09:30

® Disable Active Time = 93000
® Enable Active Time = 170000

Between these times, the 3rd Custom Field ‘Active Time’ should be False/0. Outside of these times, the ‘Active Time’ Custom Field
should be True/1.

Filesets Status Device Details Users Policies Software Updates

Edit Custom Field(s) Values...

Property ~ Last Update Time Status Value
Active Time 2024/7/23 10:24 Success true

Smart Group can be based upon the following:

® Is Active Time True/1

https://kb.filewave.com/uploads/images/gallery/2024-07/VDw6zf9ZY5N8bkR3-image.png
https://kb.filewave.com/uploads/images/gallery/2024-07/BAhhZ995ZBuff2UY-image.png
https://kb.filewave.com/uploads/images/gallery/2024-07/hJEjRvmBZiHr7czo-image.png
https://kb.filewave.com/books/custom-fields/page/add-filewave-custom-inventory-fields-remotely-using-a-fileset
https://kb.filewave.com/uploads/images/gallery/2024-07/RSitf8u0jR2Hx88v-image.png

® Ts the version of Firefox matching that within the Fileset

Do not just use the active time, unless intentional. Devices will continually enter and leave the Smart Group if this is set to only
& use the Active Time, each day. If an item is associated in this way, associated Filesets will trigger every time the device enters
the group.

Deeper Dive

The Policy Blocker script has 2 considerations initially:

e The hours between which the timed event should occur
e The current time

This means there is a time beyond which the desired action may occur and a time beyond which the action should not occur and this
needs to be compared with the current time.

The enable/disable active times are provided by way of Executable Environments. Taking this a step further, these times are defined
using Administrator Custom Fields. This way the times can more easily be altered if required.

A third Custom Field is being used to indicate if the current time is one of activity allowance or not, but this time a Client Command
Line Custom Field.

Client Command Line Custom Fields are stored locally on the device and then this value is available to the server, both for visibility,
but can also be used in queries, for Smart Groups.

[) Custom Field Definitions

Custom Fields Q_ active time X

Field Details
Display Name ~ Internal Name
Active Time custom_t [Active Time|]
Disable Active Time disable_g
Internal Name
Enable Active Time enable_a

Using internal name the field can be referenced in other parts of FileWave

custom_bool_01
Description

Provided By

Defines how the field value shall be populated

Client Command Line b
Assigned to all devices

Values
Data Type

Boolean <
Use a default value

false o

+ - Import Export Duplicate Cancel m

Client Command Liine Custom Fields may be altered in FileWave Central Admin App, however, as soon as the device checks
back inventory, the value from the client will be pushed back to the server.

https://kb.filewave.com/uploads/images/gallery/2024-07/PRPwF3Lg4yYn7kOY-image.png

Apple Profiles & Dependencies

Description

Dependencies offer a structure for Fileset installations, ensuring one or more Filesets are installed prior to one or more other Filesets.
This works great, apart from where Apple MDM Filesets are involved.

Fileset Activation Quick Re-cap

Standard Fileset

1. Client checks-in.
2. Manifest is observed
3. New items are pushed to device and activate

Apple MDM Fileset (Profiles)

1. APNs request sent to Apple

Device pulls queued APNs requests from Apple

For each APNs request, device reaches out to relevant servers, for MDM requests, this is the FileWave Server
Device checks-in

Queued MDM commands are pushed to device, e.g. InstallProfile

Profile instals

coprwn

For standard Filesets, FileWave is in control of the communication. However, for Apple MDM, there is an unknown amount of delay
until the Profile is installed.

The Issue

Since Filesets are installed sequentially, if a Fileset were allowed to depend upon an Apple MDM Fileset, the client would be held
waiting for an unknown period time, preventing other Filesets and configuration from actioning. For this reason, Apple MDM Filesets
can only depend on a different Fileset type and not the other way around.

Requirement Scripts

Requirement Scripts allow a Fileset to fail, let the client continue and then 2 minutes later try the requirement again. The

Requirement Script will continue with this process, whilst there is a non-zero exit code. By way of this process, the Requirement
Script gives the ability to delay the installation of the Fileset, until any required Profiles are installed beforehand.

Ingredients

e Fileset designed to use a Requirement Script to ensure Profile is installed prior to activation
e Associated Profile ID(s)

Profile Dependency Fileset Template.fileset.zip

Directions

Download the Fileset, import into FileWave and edit to match requirements. Select the ‘check_for_profile.sh’ script and click ‘Get
Info’:

8] 0 & 4 b i} &

Import File/Folder ~ New Folder Get Im Registry Edit Text Export Files Delete Take Control

Revision: <default> (Initial Revision) 2 Manage Revisions
Hide unused folders Q
Name ~ | Size Access User Group Verification ID Modification Date Comr
v @ var FWXT-Xr-X root wheel 1406
v [scripts FWXIWXr-X root wheel 1458
v I 736628 FWXIWXr-X root wheel 786973

B check_for_profile.sh 1.6 kB FX s Self Healing 786971 2023/9/26 15:30

The Launch Arguments will initially appear empty.

https://kb.filewave.com/attachments/379

° Info - Profile Dependency Fileset Template : check_for_profile.sh

D check_for_profile.sh

Kind: File
Created: Tue Sep 26 2023 03:30 pm
Modified: Tue Sep 26 2023 03:30 pm

Permissions ACLs Verification Executable = Flags
Execution Control

Execute at requirements step
Interactive (ignored in non Windows™ clients)
Non-interactive (background)
Wait for executable to finish

Wait for: Infinite S

Launch Arguments = Environment Variables

@ -

The values of the command line arguments are set just before the script
execution.

To use an inventory field value to set a command line argument value, use
the svntax %FIELD NAME%.

Note: Log files will be collected for synchronous non-interactive scripts only

Apply

@ Click the lock to take control of this Fileset

For each Profile that needs to be considered for installation prior to this Fileset, its ID must be added to the list of Launch Arguments
(one entry per Profile ID). Profile IDs can be obtained from within the Payload details of the Profile Filesets.

For eah Profile that must be installed, open the Profile for editing, highlight the Identifier and copy.

Payload = Settings

Display Name: Microsoft Defender Auto Updater Settings

Description: (empty)

Payloads: Canaal
.I Custom Settings

[CERIIEIEMI|1063.1ocal.bd9007¢c3-41d6-45bb-
a2bf-774ec901e4c2.Confi
3-41d6-45bb-a2bf-774eceld 9

Copy Link Location

Select All
Edit Payload...

Export Payload...

Cancel

Copy these IDs into the LaunchArguments of the Fileset. Example below shows 5 Profile IDs added for a Microsoft Defender Installer.

Info - Profile Dependency Fileset Template : check_for_profile.sh

U check_for_profile.sh

Kind: File
Created: Tue Sep 26 2023 03:30 pm
Modified: Tue Sep 26 2023 03:30 pm

Permissions ACLs Verification ~Executable = Flags
Execution Control

Execute at requirements step
Interactive (ignored in non Windows™ clients)
Non-interactive (background)
Wait for executable to finish

Wait for: Infinite &

Launch Arguments = Environment Variables

ml1063.local.5h1e7237-2773-4d3a-9627-361c4dd8a9b0.Configuration.5h1e7237-2773-4d3a-9627-361c4dd8aSb0
mi1063.Iocal.bd9007c3-41d6-45bb-a2bf-774ec901e4c2.Configuration.bd9007c3-41d6-45bb-a2bf-774ec901e4c2

ml1063.local.7f249c3c-f 48cf-952c-dd178a00a5a6.Confit i 'f249c3c-f 48cf-952c-dd17
mI1063.local.f68916¢f-c1e0-47e2-a73c-700678267fe8.Configuration.f68916cf-c1e0-47e2-a73¢c-700678267fe8
mI1063.Iocal.4726b0a7-4f74-4369-8aeb-2450e4f0f935.Configuration.4726b0a7-4f74-4369-8aeb-2450e4f0f935

+ -
The values of the command line arguments are set just before the script execution.

To use an inventory field value to set a command line argument value, use the syntax %FIELD_NAME%.
For instance: foo-%asset_tag%

Note: Log files will be collected for synchronous non-interactive scripts only

Apply

r% Click the lock to take control of this Fileset

The script allows for the idea of either by way of an Environment Variable (all_or_one). Set the value appropriately:

all All of the listed Profiles must be installed prior to the Fileset becoming active.

one At least one of the included Profiles must be installed prior to the Fileset
becoming active

The below, shows a Fileset set to require all Profiles are installed, before Fileset activation for the same Microsoft Defender example:

U check_for_profile.sh

Kind: File
Created: Tue Sep 26 2023 03:30 pm
Modified: Tue Sep 26 2023 03:30 pm

Permissions ACLs Verification Executable = Flags
Execution Control

Execute at requirements step
Interactive (ignored in non Windows™ clients)
Non-interactive (background)
Wait for executable to finish

Wait for: Infinite &

Launch Arguments = Environment Variables

Variable ~ Value

all_or_one all

+ - Reset Reset All
The values of the environment variables are set just before the script execution.
To use an inventory field value, use the syntax %FIELD_NAME%.
For instance: MY_VAR: foo-%asset_tag%
Note: environment variable names are case insensitive in Windows
Note: Log files will be collected for synchronous non-interactive scripts only

Apply

r% Click the lock to take control of this Fileset

With this set, add any additional installers into the Fileset, that would need to be installed, once the provided Profiles are installed.

Create a Fileset Group and add this Fileset and all necessary Profiles to the same group (not necessary, but somewhat neater to

manage)

For example:

v é":‘:a Microsoft Defender Associated
MicroSoft Defender Installer (macOS)

Microsoft Defender Uninstaller

.‘ .‘

Profile - Microsoft Defender - Kernel Extension
Profile - Microsoft Defender - System Extension
Profile - Microsoft Defender - Auto Updater Settings
Profile - Microsoft Defender - Notifications

Profile - Microsoft Defender - TCC

Profile - Microsoft Defender - Web Content Filter

Associate the Fileset Group, test and then rollout to more devices once happy.

This Fileset is particular useful with Apple TCC Privacy Settings Profiles. Privacy settings provide access permissions for
software to function. However, typically these Profiles need to be installed before the process that they are allowing is

@ started. This means, if the software is allowed to instal before the Profile is installed, the software process would need
restarting after the Profile is installed. The above Fileset offers the solution around this, where the Fileset will only attempt
download and installation once the Profile is in place.

Policy Loops

What

Smart Groups provide extensive power to Fileset management. By way of preset criteria, devices enter and leave groups
appropriately. However, it is possible for this to go wrong and get unexpected experiences. Policy Loops are an example of such
behaviour.

Name v Location
[G Windows TeamViewer /
[G Windows Firefox /
[G macOs TeamViewer /

When/Why

Time to explain, with examples.

Example 1

Imagine a PKG macOS installer Fileset for an app called CLU.app, version 1.0
This is associated to all devices based upon two criteria:

® Device OS is macOS
e Device does not have CLU.app version 1.0 installed

Once the software is installed, the devices no longer belong to the group, since version 1.0 I now installed.
A new version of the software is released, version 1.1. A new association is created with a differing group, with Criteria:

® Device OS is macOS
® Device does not have CLU.app version 1.1 installed

Perhaps the apparent issue is already obvious.

® Devices running version 1.0 will be included in the new Smart Group at the next refresh time.
® The Fileset will activate and the software will transfer from version 1.0 to 1.1
® Devices will leave this new group for version 1.1

Clearly, all should be done now, until the next new version is released. However, there is an issue.

When devices check back that version 1.1. is installed, at the next Smart Group refresh, devices will be added back into the group for
version 1.0, since this version is no longer installed. If this older version PKG is allowed to instal over the newer version, the software
will be downgraded back to version 1.0.

But hang on. If 1.0 is now installed, the device will be added back into the Smart Group for version 1.1 at next refresh, with the
consequence of installing 1.1. again.

This is an example of a Policy Loop. The device will continually be adding itself in and out of groups, installing and removing software
as it goes.

Example 2

Here is another example, but with just one group.
Same principle, but this time with a file level self-healing Fileset of this same application for Windows. This time CLU.exe, version 1.0
The criteria for the Smart Group association this time has been set as:

® Device 0OSis Windows
® Device does not have this software installed

https://kb.filewave.com/uploads/images/gallery/2024-07/x7fMnqYjp7NriOlr-image.png

Name: query name Main Component: All Devices

Include Archived Clients

Criteria Fields

All ¢ of these expressions must be true
Not Operating System / OS Type is E Windows ©
Not Application / Name is S |cw

Windows devices without this software will enter the Smart Group, receive the Fileset, adding the exe and any other supporting files to
the designated folder. Subsequently, the device will check back in, reporting the software is now installed. At next Smart Group
refresh, the device no longer meets criteria and the device leaves the Smart Group.

This is now where the issue occurs. As a self-healing Fileset, the software will be removed on disassociation of the Fileset. The user
will lose the software, but at next refresh, the device will re-enter the group, causing the software to instal once more.

Again, this will continue to occur, with the software constantly being removed and re-added.

For each of these examples, should certain features not be used, for example, self-healing in the latter example. Absolutely
@ not. Self-healing is a key aspect to FileWave Fileset deployment. Instead, care should be taken, when considering the criteria
of Smart Groups, to be sure that Policy Loops do not occur.

https://kb.filewave.com/uploads/images/gallery/2024-07/w9F7U1Guwt7NWqEC-image.png

Updating 3rd Party Software

What

Naturally devices require software and that software needs updating. The question is how.

For managed software, e.g. Apple VPP Apps, updates occur automatically, but other software deployed using PKG, MSI, EXE or file
level Filesets then what happens. Essentially, there are a couple of key choices.

Some software attempts to auto update, which may or may not work, in particularly when users are not admins, whilst other software
will always require updates pushed out.

Update available. Restart now.

Why

Back to the choice. Allow software to auto update or prevent such activity and choose to build new Fileets to push out updates.
Making that choice, though, can be impacted by other factors.

For example:

Is the software being deployed critical to business

Are there company restrictions that prevent software being updated before approval
Does the software even have an auto updater

How easy is it to prevent the software from updating, where an auto update does exist
Do you trust the software supplier enough to allow updates to occur without prior testing
What impact could occur if an update went wrong and what is the rollback option

Is areboot required after the update

How

Those are some considerations. Now to consider some finer details.

Denying AutoUpdates

For software that has no autoupdates, this is already a consideration, but denying updates takes some greater work. Firstly, a
requirement to locate how the update works and then how to prevent it.

https://kb.filewave.com/uploads/images/gallery/2024-07/mjs8gDNgjs0F58d3-image.png

Custom Settings

Preference Domain

The name of preference domain (com.company.application)

com.microsoft.autoupdate2

© Forced Set Once
Property List Values
Key value pairs for settings in the specified domain
Key Type Value

AcknowledgedDataCollectionPolicy ~ String RequiredDataOnly

ChannelName String ¢ Current
DisablelnsiderCheckbox Boolean <
EnableCheckForUpdatesButton Boolean <

HowToCheck String ¢ AutomaticDownload
SendAllTelemetryEnabled Boolean <

Most software vendors are likely to have either a Windows registry entry or a macOS plist preference file that can be configured to
prevent the updates. Identifying the file to alter and the values to set, in some instances can be easy to address. In fact, many other
Admins often post these settings or they may be available from vendors. However, sometimes this information isn’t readily available.

Name Type Data

b) (Default) REG_SZ (value not set)
38| ACFullAccessOnLoginScreen REG_DWORD 0x00000000 (0)
'.'.'}J Always_Online REG_DWORD 0x00000001 (1)
24 Apply_Blacklist_Or_Whitelist_ On_Meeting REG_DWORD 0x00000000 (0)
‘!’l:t";J AutorecordRemoteControlEnforced REG_DWORD 0x00000000 (0)
%) AutoUpdateMode REG_DWORD 0x00000000 (0)

Various methods exist, but generally, the process is look at files before and after making preference changes made available through
the software GUI if available. Fileset Magic is one method to assist with this process. This option of the FileWave application takes a
snapshot of the device and then after changes are made, a second snapshot is taken. It is then a case of comparing the before and
after to see what has changed.

Allowing AutoUpdates

One key question is, does micro management of updates of all applications really improve management of devices. Many applications
are not business critical or a bad update could easily have minimal impact. With that in mind, why not allow updates. Indeed, Apple
VPP Apps leave little choice. Of course, just making that decision does not mean auto updates are on by default. As such, the same
process to calculate how to disable updates may need to be actioned to work out how to enable updates.

Add to this, as eluded to prior, will the auto update work if the user is not an Admin. This needs to be tested, but if not, then the same
process used for denying updates would likely be required.

Considerations

For either method, there are some additional considerations, which mostly centre around self-healing.

Denying Autoupdates

When using a file level Fileset to deploy software, files should be set as self-healing.

Permissions ACLs \Verification ~Executable Flags

Apply to Enclosed:
O Sself Healing

Download If Missing
Ignore At Verify (Left Behind)

Don't overwrite existing files upon deployment

Overwrite only if the existing file is older

Not only does this ensure the most efficient delivery of files from server to devices, it adds some greater benefits. When the
association of the new version is associated, in the same Model, the older version should be disassociated.

If both Filesets are left associated, updated files will be replaced, whilst new files will be pushed to devices, however what about files
that the software no longer uses. If the older Fileset is not disassociated, these files will be left behind. Although this may seem
harmless enough, actually they can be very damaging. Developers of software would not expect those files to be in existence with the
new application and with thousands of lines of code, it could be easy enough that these files still have references and could cause
havoc with the newer version.

Allowing AutoUpdates

So, how about handling software where the autoupdates is allowed to occur. In this instance, if file level Filesets are used to deploy
the application, self-healing would be completely the wrong choice.

When software autoupdates, files will be altered. When a verification occurs, any altered files set for self-healing, will be replaced

https://kb.filewave.com/uploads/images/gallery/2024-07/h3Pp8R4gzE06aTKW-image.png
https://kb.filewave.com/uploads/images/gallery/2024-07/hdX83Krp5wr5fRpI-image.png
https://kb.filewave.com/uploads/images/gallery/2024-07/oT5bPs12NgBvoBAj-image.png

with the older files. Although clearly undesirable, this isn’t the same as downgrading the software, such that it would still function.
Self-healing will also return any files that were removed by the updater. This brings back the condition of files unexpectedly installed,
which again could cause the software to act irregular or not even start. As such, Ignore at Verify would be the ideal selection.

ACLs ificati Flags

Apply to Enclosed:
Self Healing

Download If Missing
o Ignore At Verify (Left Behind)

Don't overwrite existing files upon deployment

Overwrite only if the existing file is older

Ignore at Verify brings about 2 additional items for attention.

Un-installing.

Un-installers can come in differing forms, one of course is by way of self-healing. However, using the allowed auto-updater example,
self-healing is not an option. This means an alternate method would be required to remove the software. Of course, FileWave can be
used to achieve this, for example, with un-installer scripts.

Rollback

Where software is auto updating, the only version available in FileWave will likely be the same version originally pushed (unless
updated more recently as a Fileset). Therefore, if there was a need to rollback to a prior version, som additional work would be
required, which would take time before being deployable.

Overview

Each method has its own merits, but being aware of the pros and cons and how to deal with these, provides the armoury for
successful application management.

https://kb.filewave.com/uploads/images/gallery/2024-07/VbczMxuzp0TXAj9V-image.png

Un-install Filesets

What

There will likely come a time when software installed is no longer required. What options are there for removing installed software.

Options
Self-Healing

The verification settings ‘Self Healing’ and ‘Download if Missing’ ensure that any files included within the Fileset are removed on
disassociation from the devices, so naturally files will be removed.

MSI
Windows MSI Filesets are unique. They provide an un-install option for developers and FileWave benefits from this feature, if enabled

per Fileset. On disassociation, the MSI un-installer feature may be triggered.

Custom MSI install options \S
Use MSI uninstaller

Custom MSI uninstall options \S

(Un)install options may only include property assignments like PROPERTY=VALUE separated by space. See details

PKG/EXE

Unlike MST installers, PKG and EXE installers have no built-in un-installer and the files installed are not part of the Fileset, just the PKG
or EXE itself can be set with verification settings. In this instance, if the developer of the software does not offer an additional
PKG/EXE or script designed to remove the software, it is usual to self-build out some kind of script to remove those items installed.

Apple VPP & Android Play Store

Disassociation of these Filesets triggers a command to remove the Application

Other Files

When software is opened by the user, additional files can be created, which are not part of the original software or included in any of
the above installer types. If desired to remove these, then again some kind of self-build method would be required.

Why

Removing software and supporting files keeps devices clean and helps ensure the users are productive, using chosen software and
making the sharing of files is simplified; along with other reasons, like security, etc.

When

Identifying and building un-installers is one part of this process, but when the un-installer runs is key. It may seem obvious that the
un-installer should run when Filesets are no longer associated, but it is not quite that clear cut.

For example, consider the idea of writing a script to remove an application. Typically, a pre or post un-installer script could be set
within a Fileset. It may seem natural to add this script within the same Fileset as the installer of the software. However, this can raise
concerns.

Over time, developers will provide updates to software. Where autoupdating of software is prevented, new Filesets or Fileset
Revisions will be built to push out these updates. Self-Healing handles swapping between Fileset or Revisions, since any files that
match between the two differing Filesets remain untouched. However, any containing pre or post un-installer scripts will run at this
time, which is likely undesirable.

How

There is an installer Fileset, a method to uninstall the Fileset, so how to make sure these run only when desired. One such method is
the use of Fileset Groups.

Using an example, the following diagram shows a Fileset Group for Microsoft Defender, which includes an Installer Fileset, some
necessary Profiles and an Un-installer Fileset. Association will be with this Fileset Group.

https://kb.filewave.com/uploads/images/gallery/2024-07/A4DeyCzIunHDL3Nb-image.png

v @ Microsoft Defender Associated
.' MicroSoft Defender Installer (macOS)
.' Profile - Microsoft - Background Service
.’ Profile - Microsoft Defender - Kernel Extension
.’ Profile - Microsoft Defender - System Extension
.’ Profile - Microsoft Defender - Auto Updater Settings
.’ Profile - Microsoft Defender - Notifications
.' Profile - Microsoft Defender - TCC
.' Profile - Microsoft Defender - Web Content Filter

The un-installer is scripted:

Revision: <default> (Initial Revision) % Manage Revisions

Scripts Q Search...
Script
Postflight Scripts
(empty)
Verification Scripts
(empty)
Pre-Uninstallation Scripts
Post-Uninstallation Scripts

(empty)

Drag scripts into the order you prefer.

Re-run requirement scripts on change and uninstall active Fileset if they failed

Since the Fileset Group is associated with devices, the installer can easily be updated. Either a new Fileset can be dropped into this
group and the current Installer Fileset removed or the Installer could have an alternate Revision added and swapped over. However,
when removing the Fileset Group association with devices, this will trigger this Pre-Uninstaller Script and only at this point in time will
the software be removed.

PKG/EXE Un-installers

Where developers supply un-installers, pre-packaged in an installer PKG, building out auto running PKG Filesets would require the
association to this un-installer only be assigned when disassociation occurs from the installer. Planning this becomes very complex.
Instead, the PKG can be added to an empty Fileset and an un-installer script can be used to trigger the PKG file, akin to the above
Microsoft Defender example.

Similarly, EXE installers are usually triggered from the Fileset Executable options:

Permissions ACLs Verification Executable = Flags
Execution Control

Execute once when activated
Interactive (ignored in non Windows™ clients)
O Non-interactive (background)

Wait for executable to finish

Wait for: Infinite <

Launch Arguments = Environment Variables

/VERYSILENT

o =

The values of the command line arguments are set just before the script
execution.

To use an inventory field value to set a command line argument value, use
the svntax %FIELD NAME%.

Note: Log files will be collected for synchronous non-interactive scripts only

Apply

EXEs built to un-install software however have the same issue as PKG Filesets. Pre or Post Un-installer Scripts yet can be used
instead though. Again, upload the un-installer EXE into an Empty Fileset and add an un-installer script inside this same Fileset to
trigger this EXE; creating a separate un-installer Fileset that can be used in a Fileset Group as demonstrated above.

Inventory Items in Scripts

What

Each Inventory Items has an Internal Name, including Custom Fields which provide extended inventory

The Internal Name can be used to reference an Inventory Item in Scripts

These Internal Names should be added to either the Launch Arguments or Environment Variables of the Script
This applies to all script types, be that other Custom Fields, Policy Blocker Scripts or Fileset Scripts

When

Internal Name of an Inventory Item may be located from the Inventory Query Editor. Example shows the Internal Name:
‘device_product_name’

), device product name x

Component

~ All Devices

Device Product Name

The hardware model of the client.

Internal name: device_product_name

This may then be added into a Script, by way of either a Launch Argument or Environment Variable

Kind: File
Created: Tue Jul 30 2024 12:04 pm
Modified: Tue Jul 30 2024 12:04 pm

Permissions ACLs \Verification Executable Flags
Execution Control

Execute once when activated
Interactive (ignored in non Windows™ clients)
O Mon-interactive (background)

Wait for executable to finish

Wait for: Infinite =

Launch Arguments = Environment Variables

But, which should be used?

How

In some respects it does not matter which is used, however, for easy reference consider the following:

® |aunch Arguments are referenced by their numerical position
e Environment Variables are referenced by a chosen name
® Custom Fields have an abbreviated name and a full name. Custom Field names could overlap with a built-in Inventory Item.

Built-In Inventory

In general, recommendation here is that of Environment Variables. This makes reading the script easier without having to redefine
new names within the script for Launch Argument positions.

For example:

Launch Arguments = Environment Variables

%device_product_name’

Could be referenced in a script as:

macOS shell echo $1

Windows Powershell echo $args[0]
But to make the parameters more easily recognisable for anyone reading the script, it could be desirable to name them:

macOS shell
product_name=¢“$1”

echo $product_name

Windows Powershell
$product_name=“Sargs[0]”

echo $product_name

References to the provided inventory parameters in the script now makes more sense, but as mentioned, Environment Variables take
this a step further:

Launch Arguments Environment Variables

Variable ~ Value

product_name %device_product_name?¥%

A variable name is already defined and this can be referenced in the script directly

echo $product_name

Improvements

First Improvement

To improve the readability of the script further, consider setting the variable name to match the value, e.g:

Launch Arguments Environment Variables

Variable ~ Value

device_product_name %device_product_name?®

echo S$device_product_name

Second Improvement

When referencing a Custom Field in a script, it could be referenced in one of two ways.

Example Custom Field: State

Field Details

Name

| State

Internal Mame

Using Internal name the fleld can be referenced in other parts of FlleWave

state

Description

Custom Field

& Note, the description has been used to indicate this is a Custom Field. Inventory Query editor shows Description.

This could be referenced with:

Launch Arguments Environment Variables

Variable ~ Malue

state %state%
and
echo S$state

However, there is a built-in Inventory Item called State. So there are now two Internal Names of ‘state’

Custom Field

Internal name: state

Device state - Tracked, Archived, Missing, Untracked, Disabled.

Internal name: state

The above scripted example for 'state’ would actually report the built-in value, not the Custom Field. There is, though, a hidden prefix
that can be used.

This Custom Field could be referenced as either:

® Opstate%
® 9%CustomFields.state%

The latter prevents unexpected collusion with the matching Internal Name. Hence, to make the parameters more obvious when
reading...

Launch Arguments Environment Variables

Variable ~ Value
custom_fields_state % CustomFields.state%
internal_device_product_name %device_product_name%

echo S$custom_fields_state

echo $internal_device_product_name

o Notice, despite no prefix existing for built-in Inventory Items, by including a prefix for both variables in the Environment
Variables definitions, reading the script will be much clearer.

Anyone reading the script is now aware that state is a Custom Field, without having to cross reference anything. Likewise, the
reader also is aware that the device_product_name also comes from Inventory, again, without any cross reference necessary.

Unknown Inventory

Not all Inventory Items are available as parameters.

The FileWave Client builds out the report of items to inventory and return to server. Additionally, all Custom Fields, including
A those server-side (Administrator Custom Fields), are available to the client. However, inventory returned by MDM is not
available, since the client is unaware of these values, they are pure server-side.

%CustomFields.location%

Script Logging

What

For scripts added to FileWave Filesets using the Script view, logging is enabled by default.

Revision: <default> (Initial Revision) o Manage Revisions

Scripts |.Q|Searcl‘;...

Script
Requirement Scripts
(empty)
Preflight Scripts
(empty)
Activation Scripts
amazing_script.sh
Postflight Scripts
(empty)
Drag scripts into the order you prefar.

Re-run requirement scripts on change and uninstall active Fileset if they failed

When

Each time a Script (as built above) is actioned on a device, a log file is created or added to, with anything that the script outputs. The
logs of these Scripts are located in the following directories, within subfolders named after the Fileset ID:

macOS

ls -al /private/var/log/fwcld/

total 0

drwxrwxrwx 17 root wheel 544 Mar 5 16:01
root wheel 2656 Jul 31 08:27 .
root wheel 96 Aug 1 2023 1

o]
w

drwxr-xr-x

drwxrwxrwx 3

drwxrwxrwx 5 root wheel 160 Sep 25 2023 54231
drwxrwxrwx 6 root wheel 192 Sep 26 2023 54235
drwxrwxrwx 3 root wheel 96 Nov 9 2023 54367
drwxrwxrwx 3 root wheel 96 Nov 9 2023 54368
drwx rwxrwx 3 root wheel 96 Nov 9 2023 54374
drwxrwxrwx 3 root wheel 96 Nov 9 2023 54379
drwxrwxrwx 3 root wheel 96 Nov 10 2023 54384
drwxrwxrwx 3 root wheel 96 Nov 10 2023 54396
drwxrwxrwx 3 root wheel 96 Nov 10 2023 54401
drwxrwxrwx 3 root wheel 96 Nov 10 2023 54406
drwxrwxrwx 3 root wheel 96 Dec 15 2023 54417
drwxrwxrwx 3 root wheel 96 Dec 15 2023 54419
drwxrwxrwx 3 root wheel 96 Dec 15 2023 54421
drwxrwxrwx 3 root wheel 96 Mar 5 16:01 55188

Windows

0 feecld x +

& i C D » ThisPC > LocalDisk(C) * ProgramData >
@ New T Sort = View as
w T log =~ Name N
v 7 fwdd a1
= ; T 1405
= 1405 g
= B084i =1 368663
- 368663 =0 726361
=g 726361 736114
=H 736114 T
=0 736161 i
g =5 136323
736209
7T Ta6344
=3 736323
=0 36346
=3 736344
T e
= 736346
[70 T36u6
T 736444
0 T36469
= 736446
T 736563
T 736469
=0 736563
Example:

macOS example, but the principle is the same for Windows.

FileWave »> log » fwdd 3>

Date modified

Consider this simple shell script that runs a command to output the username that ran the command:

whoami.sh
f!/bin/zsh
whoami

exit @

Type

File folder
File folder
File folder
File folder
File fielder
File falder
File folder
File folder
File folder
File folder
File falder
File folder
File felder
File falder

File folder

On running the command, the user running the command will be reported. For example, running this locally on a device might reply:

% whoami
sholden

Viewing the log generated by FileWave:

cat /private/var/log/fwcld/54421/whoami.sh.log

——————————————————————— HEADER - Date: (Fri Dec 15 2023) - Time:

*********************** FOOTER - Date: (Fri Dec 15 2023) - Time:

The output presents:

® Header and Footer with timestamps
® Footer with exit code value
e Any output from the script between the Header and Footer

Improvement

(16:40:21) ———--———=--—-

(16:40:22) - Exit code:

The Script may or may not provide output, depending upon the command used. However, why not add additional echo commands (or
similar) to output extra details to provide more information from the script running.

Here is an example of a Fileset Requirement Script, waiting for confirmation of a Profile to be installed before activating the Fileset:

https://kb.filewave.com/uploads/images/gallery/2024-07/f4WIleVTNgRKxdmD-image.png

#!/binfzsh

found_profile=

while [$# -gt 0]

do
found_profile=$(profiles list all | awk -v search=$1 "$0 ~ search {print $NF}’)
if [1 -z $found_profile]
then
echo "Found installed profile: $found_profile"
exit 0
else
echo "Did not find $1"
fi
shift
done
exit 1

The script is outputting additional information, showing the ID of the Profile, found or not. On success, exit 0, else exit 1.

Requirement Scripts will retry every 2 minutes, until successful, unless coded otherwise

——————————————————————— HEADER - Date: (Thu Jul 31 2024) - Time: (11:03:12) ————=———————————————————

Did not find ml1063.local.aad®bd493-960d-4dc0-9631-a3feal89191e.Configuration.aa®bd493-960d-4dc0-9631-a3feal89191e
Did not find ml1063.local.5a57bcb9-7293-4cba-a20b-126eb2660b25.Configuration.5a57bcb9-7293-4cba-a20b-126eb2660b25
——————————————————————— FOOTER - Date: (Thu Jul 31 2024) - Time: (11:03:12) - Exit code: (1) -——-———-————————-———-

——————————————————————— HEADER - Date: (Thu Jul 31 2024) - Time: (11:05:12) ———————————————————————

Found installed profile: ml1063.local.aa®bd493-960d-4dc6-9631-a3feal89191le.Configuration.aad®bd493-960d-4dc0-9631-
a3feal89191e

——————————————————————— FOOTER - Date: (Thu Jul 31 2024) - Time: (11:05:12) - Exit code: (0) ———=—=———————————mmo——o

On first attempt, the log shows two Profiles were searched and not found, with the script exiting a value of 1. On second attempt, the
first Profile ID is now showing as installed and the script exited with a value of 0.

No Logs

Some scripts ran through FileWave, e.g. Policy Blocker Scripts, do not provide logs, with some mention in the Client Log alone, that the
Script ran.

However, it is entirely possible to choose to create a custom log file within a script, for any script, and echo any output desired to
provide additional logging.

& Consider how the script will grow and how to either overwrite or append appropriately.

