Top Tips

Cool ideas, taking your admin game to the next level.

® Desktop A-Game

o Desktop Fileset Timed Events
o Apple Profiles & Dependencies
o Policy Loops

o Updating 3rd Party Software

o Un-install Filesets

o Inventory Items in Scripts

o Script Logging
e Apple MDM

o Profile Payload Planning
o Inventory Items in Profiles

® Android EMM
o Android Policy Planning

® OS Patching
o Best Practice Guide: Software Update Deployment (16.0+)



file:///tmp/knp_snappy67ece4f46aba86.22340769.html#chapter-116
file:///tmp/knp_snappy67ece4f46aba86.22340769.html#page-941
file:///tmp/knp_snappy67ece4f46aba86.22340769.html#page-943
file:///tmp/knp_snappy67ece4f46aba86.22340769.html#page-944
file:///tmp/knp_snappy67ece4f46aba86.22340769.html#page-945
file:///tmp/knp_snappy67ece4f46aba86.22340769.html#page-946
file:///tmp/knp_snappy67ece4f46aba86.22340769.html#page-952
file:///tmp/knp_snappy67ece4f46aba86.22340769.html#page-954
file:///tmp/knp_snappy67ece4f46aba86.22340769.html#chapter-118
file:///tmp/knp_snappy67ece4f46aba86.22340769.html#page-948
file:///tmp/knp_snappy67ece4f46aba86.22340769.html#page-953
file:///tmp/knp_snappy67ece4f46aba86.22340769.html#chapter-119
file:///tmp/knp_snappy67ece4f46aba86.22340769.html#page-950
file:///tmp/knp_snappy67ece4f46aba86.22340769.html#chapter-127
file:///tmp/knp_snappy67ece4f46aba86.22340769.html#page-1040

Desktop A-Game



Desktop A-Game

Desktop Fileset Timed Events

Description

Filesets have the option to set an activation time, but what about items based upon timing of day, for example, rather than a dedicated
date.

Policy Blocker Scripts are really designed to pause management of clients. However, with some clever use, a Policy Blocker Script can
provide us with some assistance. This script type runs every 5 minutes on clients. Although the intention is to pause management
until the script reports an exit status of 0, the 5 minute continual trigger can be leveraged.

Extending this with Custom Fields, it is possible to build out a desired outcome.

Ingredients

e One (or more) Custom Fields; 3 provided - Active Time Custom Fields.customfields
e Policy Blocker Scripts

macOS Windows

Policy - Timed Event macOS.fileset.zip Policy - Timed Event Windows fileset.zip

Directions

® Download and import the provided Custom Fields
® Download and import the appropriate Fileset(s) (macOS and/or Windows)

Alter the Custom Fields values for Inactive and Active times to suit. Time is set using hours, minutes and seconds. E.g.

Desired Time (HH:MM) Custom Field Value (HHMMSS not including leading zeros)
09:30 93000

12:55 125500

18:00 180000

If changing the Custom Field value for a device which is already running the policy, 2 subsequent Model Updates will need to
be received by the client, if looking for a more ‘immediate’ result. The blocker script holds the client until success. This

£ means, during a Model Update, the blocker will run before the new Custom Field Value will be read by the device. As such,
only after a subsequent update (or inventory) will the blocker script be aware of the new Custom Field value. Custom Fields
will naturally update on devices with inventory, but this is less frequent.

Time Order

Times can be either way around.

Examples:
Consider working hours to begin at 08:30 and end at 18:00

Example 1

An item should only be considered outside of standard working hours.

e Disable Active Time: 83000
e Enable Active Time: 180000


https://kb.filewave.com/uploads/images/gallery/2024-07/bUD8dOsEWuj4trrN-image.png
https://kb.filewave.com/books/filesets-payloads/page/filewave-fileset-types#bkmrk-policy
https://kb.filewave.com/attachments/376
https://kb.filewave.com/attachments/377
https://kb.filewave.com/attachments/378

Display Name Internal Name Field Type Association Count Field Value

Enable Active Time enable_active_time Integer All Clients 180000
Disable Active Time disable_active_time Integer All Clients 83000
Example 2

Alternatively, an item should be considered during working hours:

® Enable Active Time: 83000
® Disable Active Time: 180000

Display Name Internal Name Field Type Association Count Field Value
Disable Active Time disable_active_time Integer All Clients 180000
Enable Active Time enable_active_time Integer All Clients 83000

Imported Custom Fields are disabled for all devices by default. Once tested, consider using the option to assign to all devices for each
Custom Field imported. The file provided contains all 3 Custom Fields.

Field Details
Name
Active Time

Internal Name

Using internal name the field can be referenced in other parts of FileWave

custom_bool 01
Description

Provided By
Defines how the field value shall be populated

Client Command Line ~

Assigned to all devices

Smart Groups

A third Custom Field holds a true/false value. This value may be used with a Smart Group query, to determine if an item should be
associated at this time or not.

This Custom Field is set to use custom_bool_01. If this is already in use, an alternate Custom Bool number should be utilised
instead. This is editable through the Scripts Environment Variables.

The script uses the following method to set these values.

Example

An update to Firefox needs to occur after 17:00 or before 09:30

® Disable Active Time = 93000
® Enable Active Time = 170000

Between these times, the 3rd Custom Field ‘Active Time’ should be False/0. Outside of these times, the ‘Active Time’ Custom Field
should be True/1.

Filesets Status Device Details Users Policies Software Updates

Edit Custom Field(s) Values...

Property ~  Last Update Time Status Value
Active Time 2024/7/23 10:24 Success true

Smart Group can be based upon the following:

® Is Active Time True/1


https://kb.filewave.com/uploads/images/gallery/2024-07/VDw6zf9ZY5N8bkR3-image.png
https://kb.filewave.com/uploads/images/gallery/2024-07/BAhhZ995ZBuff2UY-image.png
https://kb.filewave.com/uploads/images/gallery/2024-07/hJEjRvmBZiHr7czo-image.png
https://kb.filewave.com/books/custom-fields/page/add-filewave-custom-inventory-fields-remotely-using-a-fileset
https://kb.filewave.com/uploads/images/gallery/2024-07/RSitf8u0jR2Hx88v-image.png

® Ts the version of Firefox matching that within the Fileset

Do not just use the active time, unless intentional. Devices will continually enter and leave the Smart Group if this is set to only
& use the Active Time, each day. If an item is associated in this way, associated Filesets will trigger every time the device enters
the group.

Deeper Dive

The Policy Blocker script has 2 considerations initially:

e The hours between which the timed event should occur
e The current time

This means there is a time beyond which the desired action may occur and a time beyond which the action should not occur and this
needs to be compared with the current time.

The enable/disable active times are provided by way of Executable Environments. Taking this a step further, these times are defined
using Administrator Custom Fields. This way the times can more easily be altered if required.

A third Custom Field is being used to indicate if the current time is one of activity allowance or not, but this time a Client Command
Line Custom Field.

Client Command Line Custom Fields are stored locally on the device and then this value is available to the server, both for visibility,
but can also be used in queries, for Smart Groups.

[ ) Custom Field Definitions

Custom Fields Q_ active time X

Field Details
Display Name ~ Internal Name
Active Time custom_t [Active Time| ]
Disable Active Time disable_g
Internal Name
Enable Active Time enable_a

Using internal name the field can be referenced in other parts of FileWave

custom_bool_01
Description

Provided By

Defines how the field value shall be populated

Client Command Line b
Assigned to all devices

Values
Data Type

Boolean <
Use a default value

false o

+ - Import Export Duplicate Cancel m

Client Command Liine Custom Fields may be altered in FileWave Central Admin App, however, as soon as the device checks
back inventory, the value from the client will be pushed back to the server.


https://kb.filewave.com/uploads/images/gallery/2024-07/PRPwF3Lg4yYn7kOY-image.png

Desktop A-Game

Apple Profiles & Dependencies

Description

Dependencies offer a structure for Fileset installations, ensuring one or more Filesets are installed prior to one or more other Filesets.
This works great, apart from where Apple MDM Filesets are involved.

Fileset Activation Quick Re-cap

Standard Fileset

1. Client checks-in.
2. Manifest is observed
3. New items are pushed to device and activate

Apple MDM Fileset (Profiles)

1. APNs request sent to Apple
Device pulls queued APNs requests from Apple

Device checks-in

cuprwN

Profile instals

Queued MDM commands are pushed to device, e.g. InstallProfile

For each APNs request, device reaches out to relevant servers, for MDM requests, this is the FileWave Server

For standard Filesets, FileWave is in control of the communication. However, for Apple MDM, there is an unknown amount of delay

until the Profile is installed.

The Issue

Since Filesets are installed sequentially, if a Fileset were allowed to depend upon an Apple MDM Fileset, the client would be held
waiting for an unknown period time, preventing other Filesets and configuration from actioning. For this reason, Apple MDM Filesets
can only depend on a different Fileset type and not the other way around.

Requirement Scripts

Requirement Scripts allow a Fileset to fail, let the client continue and then 2 minutes later try the requirement again. The
Requirement Script will continue with this process, whilst there is a non-zero exit code. By way of this process, the Requirement
Script gives the ability to delay the installation of the Fileset, until any required Profiles are installed beforehand.

Ingredients

® Fileset designed to use a Requirement Script to ensure Profile is installed prior to activation

e Associated Profile ID(s)

" . " .

Directions

Download the Fileset, import into FileWave and edit to match requirements. Select the ‘check_for_profile.sh’ script and click ‘Get

Info’:
= [ 4
¥ || 0 1] 4
Import File/Folder  New Folder  Get Im Registry  Edit Text
Revision: <default> (Initial Revision) 2

Hide unused folders

Name ~ | Size Access User
v BB var FWXr-Xr-X root
v @B scripts FWXIWXr-X root

v BB 736628 FWXIWXF-X root

16 kB

+] m

Export Files  Delete
Group Verification
wheel

wheel

wheel

Self Healing

&)

Take Control

Manage Revisions

Q

ID Modification Date Comr
1406

1458

786973

786971 2023/9/26 15:30

B check_for_profile.sh


https://kb.filewave.com/attachments/379

The Launch Arguments will initially appear empty.

° Info - Profile Dependency Fileset Template : check_for_profile.sh

F? check_for_profile.sh

Kind: File
Created: Tue Sep 26 2023 03:30 pm
Modified: Tue Sep 26 2023 03:30 pm

Permissions ACLs Verification Executable = Flags
Execution Control

Execute at requirements step
Interactive (ignored in non Windows™ clients)
Non-interactive (background)
Wait for executable to finish

Wait for:  Infinite <

Launch Arguments = Environment Variables

+ =

The values of the command line arguments are set just before the script
execution.

To use an inventory field value to set a command line argument value, use
the svntax %FIELD NAME%.

Note: Log files will be collected for synchronous non-interactive scripts only

Apply

% Click the lock to take control of this Fileset

For each Profile that needs to be considered for installation prior to this Fileset, its ID must be added to the list of Launch Arguments
(one entry per Profile ID). Profile IDs can be obtained from within the Payload details of the Profile Filesets.

For eah Profile that must be installed, open the Profile for editing, highlight the Identifier and copy.

Payload = Settings

Display Name: Microsoft Defender Auto Updater Settings

Description: (empty)

Payloads: n General

II Custom Settings

[CERIEIAMI|1063.1ocal.bd9007¢c3-41d6-45bb-
a2bf-774ec901e4c2.Confij
AR s Copy

Copy Link Location

Select All
Edit Payload...

Export Payload...

Cancel

Copy these IDs into the LaunchArguments of the Fileset. Example below shows 5 Profile IDs added for a Microsoft Defender Installer.



Info - Profile Dependency Fileset Template : check_for_profile.sh

U check_for_profile.sh

Kind: File
Created: Tue Sep 26 2023 03:30 pm
Modified: Tue Sep 26 2023 03:30 pm

Permissions ACLs Verification Executable = Flags
Execution Control

Execute at requirements step
Interactive (ignored in non Windows™ clients)
Non-interactive (background)
Wait for executable to finish

Wait for:  Infinite &

Launch Arguments = Environment Variables

ml1063.local.5h1e7237-2773-4d3a-9627-361c4dd8a9b0.Configuration.5b1e7237-2773-4d3a-9627-361c4dd8adb0
mi1063.local.bd9007c3-41d6-45bb-a2bf-774ec9071e4c2.Configuration.bd9007¢3-41d6-45bb-a2bf-774ec901e4c2

ml1063.local.7f249c¢3c-f 48cf-952c-dd178a00a5a6.Confit i 'f249c3c-f. 48cf-952c-dd17
mI1063.local.f68916cf-c1e0-47e2-a73c-700678267fe8.Configuration.f68916cf-c1e0-47e2-a73¢c-700678267fe8
mI1063.Iocal.4726b0a7-4f74-4369-8aeb-2450e4f0f935.Configuration.4726b0a7-4f74-4369-8aeb-2450e4f0f935

+ -
The values of the command line arguments are set just before the script execution.

To use an inventory field value to set a command line argument value, use the syntax %FIELD_NAME%.
For instance: foo-%asset_tag%

Note: Log files will be collected for synchronous non-interactive scripts only

Apply

r% Click the lock to take control of this Fileset

The script allows for the idea of either by way of an Environment Variable (all_or_one). Set the value appropriately:

all All of the listed Profiles must be installed prior to the Fileset becoming active.

one At least one of the included Profiles must be installed prior to the Fileset
becoming active

The below, shows a Fileset set to require all Profiles are installed, before Fileset activation for the same Microsoft Defender example:

U check_for_profile.sh

Kind: File
Created: Tue Sep 26 2023 03:30 pm
Modified: Tue Sep 26 2023 03:30 pm

Permissions ACLs Verification Executable = Flags
Execution Control

Execute at requirements step
Interactive (ignored in non Windows™ clients)
Non-interactive (background)
Wait for executable to finish

Wait for:  Infinite &

Launch Arguments = Environment Variables

Variable ~  Value

all_or_one all

+ - Reset Reset All
The values of the environment variables are set just before the script execution.
To use an inventory field value, use the syntax %FIELD_NAME%.
For instance: MY_VAR: foo-%asset_tag%
Note: environment variable names are case insensitive in Windows
Note: Log files will be collected for synchronous non-interactive scripts only

Apply

r% Click the lock to take control of this Fileset

With this set, add any additional installers into the Fileset, that would need to be installed, once the provided Profiles are installed.

Create a Fileset Group and add this Fileset and all necessary Profiles to the same group (not necessary, but somewhat neater to

manage)

For example:



v é":‘:a Microsoft Defender Associated
MicroSoft Defender Installer (macOS)

Microsoft Defender Uninstaller

.‘ .‘

Profile - Microsoft Defender - Kernel Extension
Profile - Microsoft Defender - System Extension
Profile - Microsoft Defender - Auto Updater Settings
Profile - Microsoft Defender - Notifications

Profile - Microsoft Defender - TCC

Profile - Microsoft Defender - Web Content Filter

Associate the Fileset Group, test and then rollout to more devices once happy.

This Fileset is particular useful with Apple TCC Privacy Settings Profiles. Privacy settings provide access permissions for
software to function. However, typically these Profiles need to be installed before the process that they are allowing is

@ started. This means, if the software is allowed to instal before the Profile is installed, the software process would need
restarting after the Profile is installed. The above Fileset offers the solution around this, where the Fileset will only attempt
download and installation once the Profile is in place.



Desktop A-Game

Policy Loops

What

Smart Groups provide extensive power to Fileset management. By way of preset criteria, devices enter and leave groups
appropriately. However, it is possible for this to go wrong and get unexpected experiences. Policy Loops are an example of such
behaviour.

Name v Location
[G Windows TeamViewer /
[@ Windows Firefox /
[G macOs TeamViewer /

When/Why

Time to explain, with examples.

Example 1

Imagine a PKG macOS installer Fileset for an app called CLU.app, version 1.0
This is associated to all devices based upon two criteria:

® Device 0OSis macOS
® Device does not have CLU.app version 1.0 installed

Once the software is installed, the devices no longer belong to the group, since version 1.0 I now installed.
A new version of the software is released, version 1.1. A new association is created with a differing group, with Criteria:

® Device OSis macOS
® Device does not have CLU.app version 1.1 installed

Perhaps the apparent issue is already obvious.

® Devices running version 1.0 will be included in the new Smart Group at the next refresh time.
® The Fileset will activate and the software will transfer from version 1.0 to 1.1
® Devices will leave this new group for version 1.1

Clearly, all should be done now, until the next new version is released. However, there is an issue.

When devices check back that version 1.1. is installed, at the next Smart Group refresh, devices will be added back into the group for
version 1.0, since this version is no longer installed. If this older version PKG is allowed to instal over the newer version, the software
will be downgraded back to version 1.0.

But hang on. If 1.0 is now installed, the device will be added back into the Smart Group for version 1.1 at next refresh, with the
consequence of installing 1.1. again.

This is an example of a Policy Loop. The device will continually be adding itself in and out of groups, installing and removing software
as it goes.

Example 2

Here is another example, but with just one group.
Same principle, but this time with a file level self-healing Fileset of this same application for Windows. This time CLU.exe, version 1.0
The criteria for the Smart Group association this time has been set as:

® Device OSis Windows
® Device does not have this software installed


https://kb.filewave.com/uploads/images/gallery/2024-07/x7fMnqYjp7NriOlr-image.png

Name: query name Main Component: All Devices

Include Archived Clients

Criteria  Fields

All ¢ of these expressions must be true
Not  Operating System / OS Type is E Windows  ©
Not  Application / Name is S |cw

Windows devices without this software will enter the Smart Group, receive the Fileset, adding the exe and any other supporting files to
the designated folder. Subsequently, the device will check back in, reporting the software is now installed. At next Smart Group
refresh, the device no longer meets criteria and the device leaves the Smart Group.

This is now where the issue occurs. As a self-healing Fileset, the software will be removed on disassociation of the Fileset. The user
will lose the software, but at next refresh, the device will re-enter the group, causing the software to instal once more.

Again, this will continue to occur, with the software constantly being removed and re-added.

For each of these examples, should certain features not be used, for example, self-healing in the latter example. Absolutely
@ not. Self-healing is a key aspect to FileWave Fileset deployment. Instead, care should be taken, when considering the criteria
of Smart Groups, to be sure that Policy Loops do not occur.


https://kb.filewave.com/uploads/images/gallery/2024-07/w9F7U1Guwt7NWqEC-image.png

Desktop A-Game

Updating 3rd Party Software

What

Naturally devices require software and that software needs updating. The question is how.

For managed software, e.g. Apple VPP Apps, updates occur automatically, but other software deployed using PKG, MSI, EXE or file
level Filesets then what happens. Essentially, there are a couple of key choices.

Some software attempts to auto update, which may or may not work, in particularly when users are not admins, whilst other software
will always require updates pushed out.

Update available. Restart now.

Why

Back to the choice. Allow software to auto update or prevent such activity and choose to build new Fileets to push out updates.
Making that choice, though, can be impacted by other factors.

For example:

Is the software being deployed critical to business

Are there company restrictions that prevent software being updated before approval
Does the software even have an auto updater

How easy is it to prevent the software from updating, where an auto update does exist
Do you trust the software supplier enough to allow updates to occur without prior testing
What impact could occur if an update went wrong and what is the rollback option

Is a reboot required after the update

How

Those are some considerations. Now to consider some finer details.

Denying AutoUpdates

For software that has no autoupdates, this is already a consideration, but denying updates takes some greater work. Firstly, a
requirement to locate how the update works and then how to prevent it.


https://kb.filewave.com/uploads/images/gallery/2024-07/mjs8gDNgjs0F58d3-image.png

Custom Settings

Preference Domain

The name of  preference domain (com.company.application)

com.microsoft.autoupdate2

© Forced Set Once
Property List Values
Key value pairs for settings in the specified domain
Key Type Value

AcknowledgedDataCollectionPolicy ~ String RequiredDataOnly

ChannelName String ¢ Current
DisablelnsiderCheckbox Boolean <
EnableCheckForUpdatesButton Boolean <

HowToCheck String ¢ AutomaticDownload
SendAllTelemetryEnabled Boolean <

Most software vendors are likely to have either a Windows registry entry or a macOS plist preference file that can be configured to
prevent the updates. Identifying the file to alter and the values to set, in some instances can be easy to address. In fact, many other
Admins often post these settings or they may be available from vendors. However, sometimes this information isn’t readily available.

Name Type Data

b) (Default) REG_SZ (value not set)
38| ACFullAccessOnLoginScreen REG_DWORD 0x00000000 (0)
'.'.'}J Always_Online REG_DWORD 0x00000001 (1)
24 Apply_Blacklist_Or_Whitelist_ On_Meeting  REG_DWORD 0x00000000 (0)
‘!’l:t";J AutorecordRemoteControlEnforced REG_DWORD 0x00000000 (0)
%) AutoUpdateMode REG_DWORD 0x00000000 (0)

Various methods exist, but generally, the process is look at files before and after making preference changes made available through
the software GUI if available. Fileset Magic is one method to assist with this process. This option of the FileWave application takes a
snapshot of the device and then after changes are made, a second snapshot is taken. It is then a case of comparing the before and
after to see what has changed.

Allowing AutoUpdates

One key question is, does micro management of updates of all applications really improve management of devices. Many applications
are not business critical or a bad update could easily have minimal impact. With that in mind, why not allow updates. Indeed, Apple
VPP Apps leave little choice. Of course, just making that decision does not mean auto updates are on by default. As such, the same
process to calculate how to disable updates may need to be actioned to work out how to enable updates.

Add to this, as eluded to prior, will the auto update work if the user is not an Admin. This needs to be tested, but if not, then the same
process used for denying updates would likely be required.

Considerations

For either method, there are some additional considerations, which mostly centre around self-healing.

Denying Autoupdates

When using a file level Fileset to deploy software, files should be set as self-healing.

Permissions ACLs \Verification ~Executable Flags

Apply to Enclosed:
O Sself Healing

Download If Missing
Ignore At Verify (Left Behind)

Don't overwrite existing files upon deployment

Overwrite only if the existing file is older

Not only does this ensure the most efficient delivery of files from server to devices, it adds some greater benefits. When the
association of the new version is associated, in the same Model, the older version should be disassociated.

If both Filesets are left associated, updated files will be replaced, whilst new files will be pushed to devices, however what about files
that the software no longer uses. If the older Fileset is not disassociated, these files will be left behind. Although this may seem
harmless enough, actually they can be very damaging. Developers of software would not expect those files to be in existence with the
new application and with thousands of lines of code, it could be easy enough that these files still have references and could cause
havoc with the newer version.

Allowing AutoUpdates

So, how about handling software where the autoupdates is allowed to occur. In this instance, if file level Filesets are used to deploy
the application, self-healing would be completely the wrong choice.

When software autoupdates, files will be altered. When a verification occurs, any altered files set for self-healing, will be replaced


https://kb.filewave.com/uploads/images/gallery/2024-07/h3Pp8R4gzE06aTKW-image.png
https://kb.filewave.com/uploads/images/gallery/2024-07/hdX83Krp5wr5fRpI-image.png
https://kb.filewave.com/uploads/images/gallery/2024-07/oT5bPs12NgBvoBAj-image.png

with the older files. Although clearly undesirable, this isn’t the same as downgrading the software, such that it would still function.
Self-healing will also return any files that were removed by the updater. This brings back the condition of files unexpectedly installed,
which again could cause the software to act irregular or not even start. As such, Ignore at Verify would be the ideal selection.

ACLs ificati Flags

Apply to Enclosed:
Self Healing

Download If Missing
o Ignore At Verify (Left Behind)

Don't overwrite existing files upon deployment

Overwrite only if the existing file is older

Ignore at Verify brings about 2 additional items for attention.

Un-installing.

Un-installers can come in differing forms, one of course is by way of self-healing. However, using the allowed auto-updater example,
self-healing is not an option. This means an alternate method would be required to remove the software. Of course, FileWave can be
used to achieve this, for example, with un-installer scripts.

Rollback

Where software is auto updating, the only version available in FileWave will likely be the same version originally pushed (unless
updated more recently as a Fileset). Therefore, if there was a need to rollback to a prior version, som additional work would be
required, which would take time before being deployable.

Overview

Each method has its own merits, but being aware of the pros and cons and how to deal with these, provides the armoury for
successful application management.


https://kb.filewave.com/uploads/images/gallery/2024-07/VbczMxuzp0TXAj9V-image.png

Desktop A-Game

Un-install Filesets

What

There will likely come a time when software installed is no longer required. What options are there for removing installed software.

Options
Self-Healing

The verification settings ‘Self Healing’ and ‘Download if Missing’ ensure that any files included within the Fileset are removed on
disassociation from the devices, so naturally files will be removed.

MSI
Windows MSI Filesets are unique. They provide an un-install option for developers and FileWave benefits from this feature, if enabled

per Fileset. On disassociation, the MSI un-installer feature may be triggered.

Custom MSI install options \S
Use MSI uninstaller

Custom MSI uninstall options  \S

(Un)install options may only include property assignments like PROPERTY=VALUE separated by space. See details

PKG/EXE

Unlike MST installers, PKG and EXE installers have no built-in un-installer and the files installed are not part of the Fileset, just the PKG
or EXE itself can be set with verification settings. In this instance, if the developer of the software does not offer an additional
PKG/EXE or script designed to remove the software, it is usual to self-build out some kind of script to remove those items installed.

Apple VPP & Android Play Store

Disassociation of these Filesets triggers a command to remove the Application

Other Files

When software is opened by the user, additional files can be created, which are not part of the original software or included in any of
the above installer types. If desired to remove these, then again some kind of self-build method would be required.

Why

Removing software and supporting files keeps devices clean and helps ensure the users are productive, using chosen software and
making the sharing of files is simplified; along with other reasons, like security, etc.

When

Identifying and building un-installers is one part of this process, but when the un-installer runs is key. It may seem obvious that the
un-installer should run when Filesets are no longer associated, but it is not quite that clear cut.

For example, consider the idea of writing a script to remove an application. Typically, a pre or post un-installer script could be set
within a Fileset. It may seem natural to add this script within the same Fileset as the installer of the software. However, this can raise
concerns.

Over time, developers will provide updates to software. Where autoupdating of software is prevented, new Filesets or Fileset
Revisions will be built to push out these updates. Self-Healing handles swapping between Fileset or Revisions, since any files that
match between the two differing Filesets remain untouched. However, any containing pre or post un-installer scripts will run at this
time, which is likely undesirable.

How

There is an installer Fileset, a method to uninstall the Fileset, so how to make sure these run only when desired. One such method is
the use of Fileset Groups.

Using an example, the following diagram shows a Fileset Group for Microsoft Defender, which includes an Installer Fileset, some
necessary Profiles and an Un-installer Fileset. Association will be with this Fileset Group.


https://kb.filewave.com/uploads/images/gallery/2024-07/A4DeyCzIunHDL3Nb-image.png

v @ Microsoft Defender Associated
.' MicroSoft Defender Installer (macOS)
.' Profile - Microsoft - Background Service
.’ Profile - Microsoft Defender - Kernel Extension
.’ Profile - Microsoft Defender - System Extension
.’ Profile - Microsoft Defender - Auto Updater Settings
.’ Profile - Microsoft Defender - Notifications
.' Profile - Microsoft Defender - TCC
.' Profile - Microsoft Defender - Web Content Filter

The un-installer is scripted:

Revision: <default> (Initial Revision) % Manage Revisions

Scripts Q Search...
Script
Postflight Scripts
(empty)
Verification Scripts
(empty)
Pre-Uninstallation Scripts
Post-Uninstallation Scripts

(empty)

Drag scripts into the order you prefer.

Re-run requirement scripts on change and uninstall active Fileset if they failed

Since the Fileset Group is associated with devices, the installer can easily be updated. Either a new Fileset can be dropped into this
group and the current Installer Fileset removed or the Installer could have an alternate Revision added and swapped over. However,
when removing the Fileset Group association with devices, this will trigger this Pre-Uninstaller Script and only at this point in time will
the software be removed.

PKG/EXE Un-installers

Where developers supply un-installers, pre-packaged in an installer PKG, building out auto running PKG Filesets would require the
association to this un-installer only be assigned when disassociation occurs from the installer. Planning this becomes very complex.
Instead, the PKG can be added to an empty Fileset and an un-installer script can be used to trigger the PKG file, akin to the above
Microsoft Defender example.

Similarly, EXE installers are usually triggered from the Fileset Executable options:



Permissions ACLs Verification Executable = Flags
Execution Control

Execute once when activated
Interactive (ignored in non Windows™ clients)
O Non-interactive (background)

Wait for executable to finish

Wait for:  Infinite <

Launch Arguments = Environment Variables

/VERYSILENT

0 =

The values of the command line arguments are set just before the script
execution.

To use an inventory field value to set a command line argument value, use
the svntax %FIELD NAME%.

Note: Log files will be collected for synchronous non-interactive scripts only

Apply

EXEs built to un-install software however have the same issue as PKG Filesets. Pre or Post Un-installer Scripts yet can be used
instead though. Again, upload the un-installer EXE into an Empty Fileset and add an un-installer script inside this same Fileset to
trigger this EXE; creating a separate un-installer Fileset that can be used in a Fileset Group as demonstrated above.



Desktop A-Game

Inventory Items in Scripts

What

Each Inventory Items has an Internal Name, including Custom Fields which provide extended inventory

The Internal Name can be used to reference an Inventory Item in Scripts

These Internal Names should be added to either the Launch Arguments or Environment Variables of the Script
This applies to all script types, be that other Custom Fields, Policy Blocker Scripts or Fileset Scripts

When

Internal Name of an Inventory Item may be located from the Inventory Query Editor. Example shows the Internal Name:
‘device_product_name’

), device product name b4

Component

~ All Devices

Device Product Name

The hardware model of the client.

Internal name: device_product_name

This may then be added into a Script, by way of either a Launch Argument or Environment Variable

Kind: File
Created: Tue Jul 30 2024 12:04 pm
Modified: Tue Jul 30 2024 12:04 pm

Permissions ACLs \Verification Executable Flags
Execution Control

Execute once when activated
Interactive (ignored in non Windows™ clients)
© Non-interactive (background)

Wait for executable to finish

<>

Wait for:  Infinite

Launch Arguments | Environment Variables

But, which should be used?



How

In some respects it does not matter which is used, however, for easy reference consider the following:

® lLaunch Arguments are referenced by their numerical position
® Environment Variables are referenced by a chosen name
® Custom Fields have an abbreviated name and a full name. Custom Field names could overlap with a built-in Inventory Item.

Built-In Inventory

In general, recommendation here is that of Environment Variables. This makes reading the script easier without having to redefine
new names within the script for Launch Argument positions.

For example:

Launch Arguments | Environment Variables

%device_product_name®%

Could be referenced in a script as:

macOS shell echo $1

Windows Powershell echo $args[0]
But to make the parameters more easily recognisable for anyone reading the script, it could be desirable to name them:

macOS shell
product_name=¢“$1”

echo $product_name

Windows Powershell
$product_name=“Sargs[0]”

echo $product_name

References to the provided inventory parameters in the script now makes more sense, but as mentioned, Environment Variables take
this a step further:

Launch Arguments Environment Variables

Variable ~  Value

product_name %device_product_name?%

A variable name is already defined and this can be referenced in the script directly

echo $product_name

Improvements

First Improvement

To improve the readability of the script further, consider setting the variable name to match the value, e.g:

Launch Arguments Environment Variables

Variable ~  Value

device_product_name %device_product_name?®

echo S$device_product_name



Second Improvement

When referencing a Custom Field in a script, it could be referenced in one of two ways.

Example Custom Field: State

Field Details

Name

| State

Internal Name

Uslng Internal name the fleld can be referenced in other parts of FlleWave

state

Description

Custom Field

& Note, the description has been used to indicate this is a Custom Field. Inventory Query editor shows Description.

This could be referenced with:

Launch Arguments Environment Variables

Variable ~  Value

state %state®%
and
echo S$state

However, there is a built-in Inventory Item called State. So there are now two Internal Names of ‘state’

Custom Field

Internal name: state

Device state - Tracked, Archived, Missing, Untracked, Disabled.

Internal name: state

The above scripted example for 'state’ would actually report the built-in value, not the Custom Field. There is, though, a hidden prefix
that can be used.

This Custom Field could be referenced as either:

® %state%
® 9%CustomFields.state%

The latter prevents unexpected collusion with the matching Internal Name. Hence, to make the parameters more obvious when
reading...

Launch Arguments Environment Variables

Variable ~  Value
custom_fields_state % CustomFields.state%
internal_device_product_name %device_product_name?%

echo Scustom_fields_state

echo $internal_device_product_name



o Notice, despite no prefix existing for built-in Inventory Items, by including a prefix for both variables in the Environment
Variables definitions, reading the script will be much clearer.

Anyone reading the script is now aware that state is a Custom Field, without having to cross reference anything. Likewise, the
reader also is aware that the device_product_name also comes from Inventory, again, without any cross reference necessary.

Unknown Inventory

Not all Inventory Items are available as parameters.

The FileWave Client builds out the report of items to inventory and return to server. Additionally, all Custom Fields, including
A those server-side (Administrator Custom Fields), are available to the client. However, inventory returned by MDM is not
available, since the client is unaware of these values, they are pure server-side.

%CustomFields.location%



Desktop A-Game

Script Logging

What

For scripts added to FileWave Filesets using the Script view, logging is enabled by default.

Revision: <default> (Initial Revision) i Manage Revisions

Scripts |.Q|Searcl‘;...

Script

Requirement Scripts
(empty)

Preflight Scripts
(empty)

Activation Scripts
amazing_script.sh

Postflight Scripts

(empty)

Drag scripts into the arder you prefer.

Re-run requirement scripts on change and uninstall active Fileset if they failed

When

Each time a Script (as built above) is actioned on a device, a log file is created or added to, with anything that the script outputs. The
logs of these Scripts are located in the following directories, within subfolders named after the Fileset ID:

macOS

# ls -al /private/var/log/fwcld/

total 0

drwxrwxrwx 17 root wheel 544 Mar 5 16:01
root wheel 2656 Jul 31 08:27 .
root wheel 96 Aug 1 2023 1

[ee]
w

drwxr-xr-x

drwxrwxrwx 3

drwxrwxrwx 5 root wheel 160 Sep 25 2023 54231
drwxrwxrwx 6 root wheel 192 Sep 26 2023 54235
drwxrwxrwx 3 root wheel 96 Nov 9 2023 54367
drwxrwxrwx 3 root wheel 96 Nov 9 2023 54368
drwxrwxrwx 3 root wheel 96 Nov 9 2023 54374
drwxrwxrwx 3 root wheel 96 Nov 9 2023 54379
drwxrwxrwx 3 root wheel 96 Nov 10 2023 54384
drwxrwxrwx 3 root wheel 96 Nov 10 2023 54396
drwxrwxrwx 3 root wheel 96 Nov 10 2023 54401
drwxrwxrwx 3 root wheel 96 Nov 10 2023 54406
drwxrwxrwx 3 root wheel 96 Dec 15 2023 54417
drwx rwxrwx 3 root wheel 96 Dec 15 2023 54419
drwxrwxrwx 3 root wheel 96 Dec 15 2023 54421
drwxrwxrwx 3 root wheel 96 Mar 5 16:01 55188

Windows



0 feecld x +

& i C D » ThisPC > LocalDisk(C) * ProgramData >
@ New T Sort = View as
w T log =~ Name N
v 7 fwdd a1
= ; T 1405
= 1405 g
= B084i =1 368663
- 368663 =0 726361
=g 726361 736114
=H 736114 T
=0 736161 i
g =5 136323
736209
7T Ta6344
=3 736323
=0 36346
=3 736344
T e
= 736346
[ 70 T36u6
T 736444
0 T36469
= 736446
T 736563
T 736469
=0 736563
Example:

macOS example, but the principle is the same for Windows.

FileWave »> log » fwdd 3>

Date modified

Consider this simple shell script that runs a command to output the username that ran the command:

whoami.sh
f!/bin/zsh
whoami

exit @

Type

File folder
File folder
File folder
File folder
File fielder
File falder
File folder
File folder
File folder
File folder
File falder
File folder
File felder
File falder

File folder

On running the command, the user running the command will be reported. For example, running this locally on a device might reply:

% whoami
sholden

Viewing the log generated by FileWave:

# cat /private/var/log/fwcld/54421/whoami.sh.log

——————————————————————— HEADER - Date: (Fri Dec 15 2023) - Time:

*********************** FOOTER - Date: (Fri Dec 15 2023) - Time:

The output presents:

® Header and Footer with timestamps
® Footer with exit code value
e Any output from the script between the Header and Footer

Improvement

(16:40:21) ———--———=--—-

(16:40:22) - Exit code:

The Script may or may not provide output, depending upon the command used. However, why not add additional echo commands (or
similar) to output extra details to provide more information from the script running.

Here is an example of a Fileset Requirement Script, waiting for confirmation of a Profile to be installed before activating the Fileset:


https://kb.filewave.com/uploads/images/gallery/2024-07/f4WIleVTNgRKxdmD-image.png

#!/binfzsh

found_profile=

while [ $# -gt 0]

do
found_profile=$(profiles list all | awk -v search=$1 "$0 ~ search {print $NF}’)
if [ 1 -z $found_profile ]
then
echo "Found installed profile: $found_profile"
exit 0
else
echo "Did not find $1"
fi
shift
done
exit 1

The script is outputting additional information, showing the ID of the Profile, found or not. On success, exit 0, else exit 1.

Requirement Scripts will retry every 2 minutes, until successful, unless coded otherwise

——————————————————————— HEADER - Date: (Thu Jul 31 2024) - Time: (11:03:12) ————=———————————————————

Did not find ml1063.local.aad®bd493-960d-4dc0-9631-a3feal89191e.Configuration.aa®bd493-960d-4dc0-9631-a3feal89191e
Did not find ml1063.local.5a57bcb9-7293-4cba-a20b-126eb2660b25.Configuration.5a57bcb9-7293-4cba-a20b-126eb2660b25
——————————————————————— FOOTER - Date: (Thu Jul 31 2024) - Time: (11:03:12) - Exit code: (1) -——-———-————————-———-

——————————————————————— HEADER - Date: (Thu Jul 31 2024) - Time: (11:05:12) ———————————————————————

Found installed profile: ml1063.local.aa®bd493-960d-4dc6-9631-a3feal89191le.Configuration.aad®bd493-960d-4dc0-9631-
a3feal89191e

——————————————————————— FOOTER - Date: (Thu Jul 31 2024) - Time: (11:05:12) - Exit code: (0) ———=—=———————————mmo——o

On first attempt, the log shows two Profiles were searched and not found, with the script exiting a value of 1. On second attempt, the
first Profile ID is now showing as installed and the script exited with a value of 0.

No Logs

Some scripts ran through FileWave, e.g. Policy Blocker Scripts, do not provide logs, with some mention in the Client Log alone, that the
Script ran.

However, it is entirely possible to choose to create a custom log file within a script, for any script, and echo any output desired to
provide additional logging.

& Consider how the script will grow and how to either overwrite or append appropriately.



Apple MDM



Apple MDM

Profile Payload Planning
What

® Apple Profiles contain Payloads
® Payloads provide configuration options

® As of macOS 11, Profiles may only be delivered to devices which are also MDM enrolled. (MDM is the only enrolment option
for iOS and similar OS types).

That’s the fundamentals of Profiles in a nutshell, but there is more consideration.

Key aspects:

® A Profile may contain multiple Payload types
® Multiple Profiles may be pushed to each device
® macOS devices have an additional option: should the Profile be set against the User or the System?

Example Profile with multiple Payloads:
Payload = Settings

Display Name: Mac Sample profile

Description: (empty)

Payloads: |° B” General
F Passcode

ﬁo# Security & Privacy

@ Login Window

For the same above Payload, the Settings show:

Payload = Settings

Platform Installation
i0S Users
macOS System

Reinstall this profile if the user removes it

Force legacy install (macOS 10.7 +)
Apple’s implementation is such, that only one local user can be managed (the first user after enrolment). However, any amount of
directory users can be managed. This restriction applies to User set Profiles only.

Not all Payload types can be User or System. Some may only be User or only System, rather than the choice. From the screenshot
above, the Settings show System is the only choice and is therefore greyed out.

Possibly, one of the most important consideration:

Where multiple Profiles are assigned which contain the same Payload type (but differing settings), Apple do not guarantee the



& experience. There used to be a suggestion for restrictive Payload settings, the most restrictive wins, but other Payload types
have always had this mention.

How
Firstly, overlapping Payloads should be avoided, to ensure experience is by design, not luck.
Next, from the above, Profiles can contain many Payloads, but should they? Consider:

® Having an experience that is undesired in the Profile
e Needing to ‘Force Reinstall’ a Profile

Undesired Experience:

More items in the Profile makes it harder to identify anything occurring that is undesired.

Removing the undesired experience temporarily, whilst identifying, involves removing the entire Profile, which could easily be
undesirable in its own right. By creating multiple Profiles with different Payloads, instead of one massive Profile with lots of Payloads,
makes identifying and resolving unexpected experiences, much more easily with less impact.

Force Reinstall

This option can be desirable for a few reasons, but consider this example:

e Profile contains a Payload with a value that is set by way of a Custom Field or Inventory item.
® Custom Field or Inventory Item is altered and devices need that new value to be applied within the Profile Payload

An example Web Clip Payload, using a Custom Field to populate the value:

Web Clip

Label

The name to display for the web clip

[CF WebClip ]

URL

The URL to be displayed when opening the web clip

%custom_field.web_link%

Removable (i0S only)

Enable removal of the web clip

When a Profile is altered, FileWave will note the Profile as Modified and the Profile will be redelivered with the new settings. However,
when changing Custom Field or Inventory values, there is no change to the Profile. The Payload referencing the Custom Field or
Inventory item is still referencing this, it is only during delivery that the value is noted and entered in the Profile. As such, if the
referenced Custom Field or Inventory values are altered for devices, the current Profile will need to be reinstalled. A ‘Force Reinstall’
will ensure this occurs, but two things occur from this action. The current Profile is removed and the updated Profile is installed.
Consider, what is the consequence of Profile removal?

With the above in mind, always consider what is being included in a Profile and therefore keep each Profile lean in content; try not to
overload too many Payloads into one Profile.

Overlapping Payloads

What is an overlapping Payload. This is when two or more Profiles are trying to manage the same thing, but with different settings.
This shouldn’t be confused with multiple allowed Payloads.

For example:

Profiles to manage the Dock. One Profile sets the dock on the right and the other on the left. This is overlapping and should be
avoided:

Dock

Dock Settings

Settings for Dock behavior and appearance

Dock Size: 6 <
Magnification: ~ None <

Postition: Left Bottom @ Right



Dock

Dock Settings

Settings for Dock behavior and appearance
Dock Size: 6 <

Magnification: ~ None S

Postition: Q Left Bottom Right

If both of the above were assigned to a device, how could the device possible determine which should be obeyed?

Profile to provide certificates. One Profile provides one certificate and another Profile provides a different certificate. Thisisn’t
overlapping. Providing multiple certificates is desirable and need not be from one single Profile.

User vs System

Within the settings of Profiles is an option to define whether the Profile should apply to users or system. Some Payloads may be set as
User or System only, but not either, whilst others may be either. A Profile must have a setting, so a default will be used when a Profile
Payload is first added. Always check to confirm it is set as desired.

A Profile may only have one setting applied. FileWave will therefore prevent the addition of a User only Payload to a Profile already
containing another Payload set as System. However, where Payloads may be either, if a Profile already contains a Payload, any
additional Payloads that can be added will all be set with the same setting.

For example:

Create a new Profile and add the Login Window Payload

Save the Profile and re-open to observe the Settings (should be shown as System and greyed out)

Create another new Profile and add a Dock Payload

Save the Profile and re-open to observe the Settings (should show as either System or User, but defaulted to System).
Change to User, save and re-observe the change

It can be seen that the Login Window is System only, yet the Dock Payload could be either

® Re-open the Login Window Profile created above and add the Dock Payload to this Profile
® Save and re-open to observe the Settings

The Settings remain as System and the applied Dock Payload will therefore be set for the System and not User. If a Dock Profile of
User were required, it should not be included in a Profile that already contains a Payload that is set as System.

Why

Should all of the above be of consideration? Why would User be chosen over System? If System will work for all users, why not just
set all Profiles as System where possible. However, what if the settings included were only for users, but not for a hidden Admin
account. This local admin account is not managed by MDM. By setting System level, any Profiles built this way will impact this user,
along with the managed local user and any directory users. This may be undesirable. Passcode policy could be an example.

Some Payload types require certain types of enrolment. Many Payload settings require Supervision, for example. macOS devices
managed via User Enrolment, do not qualify as Supervised.

Allow use of iMessage (Supervised devices only)

Allow Apple Music (Supervised devices only)

Allow Radio (Supervised devices only)

Allow installing apps using Apple Configurator and iTunes
Allow installing apps using App Store (Supervised devices only)
Allow automatic app downloads (Supervised devices only)

Allow removing apps (Supervised devices only)

Allow removing system apps (Supervised devices only)

Allow App Clips (Supervised devices only)

Allow In-App Purchase

Planning

The above comes down to planning.

Profiles could contain multiple Payloads based upon functionality and for User or System determined targeting. Who needs to be
managed? Local user (all or just managed) and/or directory users.



Consider the impact if a Profile were ‘Force Reinstalled’ or if it was deemed necessary to temporarily remove the association to one or
more devices, for whatever reason.

Also give thought to how devices will be purchased and enrolled depending upon what needs to be managed. Using a BYOD scheme
and only using User Enrolment will greatly reduce what can be managed, whist ADE(DEP) gives the maximum amount of control
through Profiles.

Will the choice made, incur additional concerns over security, if desired management cannot be achieved?



Apple MDM

Inventory Items in Profiles

What

® Each Inventory Items has an Internal Name, including Custom Fields which provide extended inventory
® The Internal Name can be used to reference any Inventory Items in Profiles

When

Internal Name of an Inventory Item may be located from the Inventory Query Editor. Example shows the Internal Name:
‘device_product_name’

. device product name ®

Component

~ All Devices

Device Product Name

The hardware model of the client.

Internal name: device_product_name

This may be added into a Profile, effectively customising the Profile per device or user:

Lock Screen Message

“If Lost, Return to..." Message

This *%device_product_name?¥ belongs to FileWave

Message displayed on the login window and lock screen

Press Home to unlock

This iPad belongs to FileWave

® &

Custom Fields

Associated Custom Fields may also be used with Payloads settings of Profiles. Extending the above example, consider a Custom Field
for Asset Tag:

Custom Field Definition



Field Details

Name

[Asset Tag J

Internal Name

Using Internal name the fleld can be referenced in other parts of FlleWave

asset_tag

Profile Payload

Lock Screen Message

"If Lost, Return to.." Message

This %device_product_name% belongs to FileWave.

Message displayed on the login window and lock screen

Asset Tag Information

[ lasset Tag: %asset_tag% ]

Message displayed at the bottom of the login windew and lack screen.

Lock Screen

This iPad belongs to FileWave. Asset Tag: iPad00

* &

Improvement

When referencing a Custom Field in a Profile Payload, it could be referenced in one of two ways. From the above example, it could be
either:

® 9%asset_tag%
® %custom_field.asset_tag%

The additional prefix indicates more clearly that this is a Custom Field Inventory Item. If there was an Inventory Item with a matching
name provided by FileWave, the first item in the list would report the provided Inventory Item value for the device and not the Custom
Field.

For demonstration, imagine creating a Custom Field called 'My Device Product Name' with Internal Name: device_product_name.

Field Details

Mame

[My Device Product Name ]

Internal Name

Using internal name the fleld can be referanced in ather pars of FlleWave
device_product_name

Warning: custom field used in filesets. [details]

Description

Custom Field

There are now two Inventory Items with the Internal Name: device_product_name:

The hardware model of the client.

Internal name: device_product_name

and



Custom Field

Internal name: device_product_name

With the values:

Criteria Fields Dashboard

Drop here the fields you want to see in the query report ; change column order by moving column header.
My Device Product Name Device Product Name

iPad 32GB iPad

Altering the above example Lock Message to use both of these:

Lock Screen Message

"If Lost, Return to..." Message

FileWave Inventory: %device_product_name%

Massage displayed on the login windew and lock screen

Asset Tag Information

[l Custom Field: %custom_field.asset_tag¥ ]

Message displayed at the bottom of the login windew and lock screen.

The device clearly demonstrates how the value without a prefix uses the FileWave provided Custom Field value:

Press Home to unlock

FileWave Inventory: iPad | Custom Field: iPad0

* G

To prevent confusion with overlapping Inventory Items between Custom Field and built-in Inventory, always consider using
the prefix for Custom Fields

User Customisation

Although FileWave doesn't manage users, if users are associated with devices, this extends the ability to customise Profiles for users.

User details from enrolment may be used, but to extend beyond this, LDAP servers set for extraction can greatly increase the
Inventory Items available for Parameters via LDAP Custom Fields.

An example of Profile customisation for users:



Email

Account Description

The display name of the account (a.g. “Company Mall Account®)
My Mail Account

Account Type

The protocol for accassing the account
IMAP 2  Path Prefic: | [optional]

User Display Name

The display name of the user (e.g. "John Appleseed”)
%full_name%

Email Address

The address of the account (e.g. "john@company.com")

Hemail¥

@ One Profile can therefore be used for multiple devices, tailoring the Payload to the users of those devices.


https://kb.filewave.com/uploads/images/gallery/2024-07/fJ9WF9cuR1mlt2Mq-image.png

Android EMM



Android EMM

Android Policy Planning

What

Android Policies provide a method of configuration.
Key aspects:

e Policies may contain multiple types of settings
e Multiple Policies may be pushed to devices

Example Policy, allowing Developer Settings, including setting Debug:

Device Restrictions

Allow use of camera.

— Unspecified ¢
This is a device restriction; if disallowed here, then the specific application policies and permission grants lose — the camera will be disabled:
v Allowed ~  Allow user to configure the developer settings of the device.
If enabled, the user has access to and can configure developer settings such as Safe Boot and device debugging features.
— Unspecified ¢ Allow user to initiate a factory reset of the device.
If factory reset is enabled, a user may manually initiate a device reset. If disabled, a device reset (or "wipe") must be done by a FileWave administrator. The global policy default is “disabled."
— Unspecified ~  Location Mode.
The degree of location detection enabled on organization owned devices.
— Unspecified 2 Allow location sharing.

Allow users to configure location sharing preferences. The Android global default is "allowed."

Possibly, one of the most important consideration:

Where multiple Profiles are assigned which contain the same Payload type (but differing settings), what could the possible
£ expectation of experience be on the end device with these overlapping Policy Settings, noting that Apps potentially have their
own settings also?

How
Firstly, overlapping Policies should be avoided, to ensure experience is by design, not luck.
Next, as mentioned above, Policies can contain many configurations, but should they? Consider:

® Having an experience that is undesired from the Policy
® Needing to remove and reinstall a Policy

Undesired Experience:

More items in the Policy makes it harder to identify anything occurring that is undesired.

Removing the undesired experience temporarily, whilst identifying, may involve removing the entire Policy, which could easily be
undesirable in its own right. By creating multiple Policies with different settings, instead of one massive Policy containing everything,
makes identifying and resolving unexpected experiences, much easier with less impact.

Remove/Reinstall

Perhaps something doesn’t appear to be working as intended. To confirm the Policy, it may be desirable to remove that Policy, but
what if other items in the Policy should not be removed, e.g. Certificates. Separating settings based upon functionality should help
alleviate this potential problem.

Overlapping Policies

What is an overlapping Policy. This is when two or more Policies are trying to manage the same thing, but with different settings. This
shouldn’t be confused with multiple allowed Policies.

Greater detail on this can be found in our KB:

https://kb.filewave.com/books/android/page/android-emm-policies-and-permissions

In essence, overlapping Policies should be avoided. An experience may appear correct, due to an overlap. If one of the Polices were
removed, the experience may unexpectedly alter if there was no awareness of this.

A Policy to provide certificates is an example of a potential multiple allowed Policy. One Policy provides one certificate and another


https://kb.filewave.com/books/android/page/android-emm-policies-and-permissions

Policy provides a different certificate.

Planning
The above comes down to planning.
Policies could contain multiple settings based upon functionality.

Consider the impact if there was a requirement to remove and subsequently reinstate a Policy, for whatever reason.

Also give thought to how devices will be purchased and enrolled depending upon what needs to be managed. Enrolment types can
also impact items managed.

Will the choice made, incur additional concerns over security, if desired management cannot be achieved?



OS Patching



OS Patching

Best Practice Guide: Software Update
Deployment (16.0+)

What

With FileWave Version 16+, the system for patching devices with Operating system updates has been overhauled, and your current
workflows likely should be as well. This article will review how you can best cleanup, reorganize, and overall simplify your patch
management processes.

Note that you want to avoid assigning Windows OS updates to pre-16.0.0 clients because they will not function correctly. You
@ can simply add a criteria to your SmartGroup to check if the "FileWave Client Version" begins with "16." and that would protect
you until you can work to upgrade all of your devices.

Also note that Windows OS updates from before FileWave 16 should be purged from your server to free up disk space, and
@ because they will not function correctly. This transition from the old format to this new format should be a one-time exercise
to remove the old style of Windows OS updates and ensure your clients are upgraded to FileWave 16.0 or higher.

When/Why

Patch management of devices in your environment is the most important thing an IT manager does in almost every single
organization. FileWave 16+ does operating system patching differently than before, but we feel confident if you follow this guide, and
tailor it to your environment, that you'll find the new solution much more elegant and relatively care free.

For the purposes of this document, we'll use an example of a common deployment scenario, Alpha, Beta, then Production patching.
That is, a system where you fist test new patches against a small set of devices (your alpha group) to ensure patches work without

issue. Later, you would deploy to the larger beta group to ensure distribution is good. Only when both Alpha and Beta are good would
you deploy to Production.

o In some environments, folks go straight from test to production directly for OS patching. This will work fine as well, and you
can tailor the below accordingly.

How

As stated above, in our example organization, we patch as follows:

1. Each Monday we evaluate newly offered patches, and if we want to deploy them to test, we assign them to our Alpha group.
2. On Wednesday of each week, if Alpha testing was good, we'll assign these same patches to the Beta group.
3. And on the following Monday, if all is still well, we assign the same patches to our Production group (all devices).

But if we are starting from scratch, how best do we do this? We need three sets of objects to make all of the above happen. Device
groups, fileset groups, and deployments.

Note: We are using Deployments here instead of associations on purpose. Deployments maintain their settings regardless of
new" content, and are much easier to use to add device exceptions (i.e. in this test, exclude Device A)

Device Groups
The device groups will be built like this:

v [[] OS Patching (All Platforms)

> [@ OS Patching Production

> [J OS Patching Alpha
> [] OS Patching Beta

The top level group is only for organizational purposes, and includes three groups. There is a manual group for Alpha Devices and for
Beta Devices (we'll put select devices in each group manually). The Production group is a smart group based on ALL operating
systems we manage. In our case, Apple devices and Windows. (Changes in Version 16+ make it possible to do this without any odd


https://kb.filewave.com/uploads/images/gallery/2025-03/m2k5mveosL7qxAXZ-image.png

reporting...we'll show you below).

Note that once these groups are established, we will likely not need to edit them regularly. The "Production" smart group definition is
shown below:

Name: Production Patching Main Component: All Devices

Component Include Archived Clients

> ActivationLock Bypass Code
= Criteria Fields Clients
> All Devices

Pl it Pelle One < or more of these expressions must be true

Android Base Policy

i Sys g is i S
Apple Beta Enrollment Token Operating System / OS Type Windows
Apple Certificate Operating System / OS Type is macOS
Apple Media Operating System / OS Type is (o}
Apple Profile 5

Operating System / OS Type

Application
Back nd Task

Booster

Add Group

Cancel

Fileset Groups

FileWave Version 16+ makes bulk-creating and storing patches MUCH easier. For our example patching workflow we are going to
create three fileset groups to match our three device groups. Note again that we've added a top level group for organizational
purposes.

~ =& 0S Patching (All Platforms)
g=4 OS Patching Alpha
> E OS Patching Beta
OS Patching Production

Deployments

Deployments are the way we'll relate the other two building blocks above. That is, we'll use deployments to relate Patches to Devices
using the fileset groups and device groups we built above. Alpha patches to Alpha devices, etc. Notice that the "Beta" assignment
contains both Alpha and Beta Groups...we do that because they are manual groups and we want to make sure those devices all
receive the assignments. The Production deployment doesn't need that, because it is by platform and covers all devices no matter
what groups they are in.

ve Central Admin

-
~ &
Update Model  New Deployment

8 Deployments

52 ciens Included Groups Included Clients Excluded Groups  Excluded Clients Fileset Groups.
Wil

Qg Flesets

s AssreainTl

(2] peployments TanTairwn

[8] Associations

Patching Alpha (All Platforms) tching Alpha Patching Alpha

&8, Imaging Patct ta (All Platforms) P atching Beta S Patching Beta
0S Patching Production (All Platforms) 0 9 jon 0s Patehing Production

7= Classroom
t

(4 108 Inventory

5 e

o Software Updates

/ (2] wwotory Quoros

~ & sample Queres

Note that the assignments above are critical to the workflow, and you'll see that in the How to Use section below.

How to Use?

Now that we have our building blocks in place, we can start patching. Let's pretend that it is Monday morning of a new week. Let's go


https://kb.filewave.com/uploads/images/gallery/2025-03/vrggSMnIzK9YlFXS-image.png
https://kb.filewave.com/uploads/images/gallery/2025-03/FjjA8IKYscS143M1-image.png
https://kb.filewave.com/uploads/images/gallery/2025-03/ArCqq3YhssjLQWEo-image.png

into the Software Updates view to see what new patches are available to us:

File

Edit View Server

—

—
Update Model

File

Dashboard

Clients

Deployments

Associations

oom
i0S Inventory
License Management
Software Updates
Boo:

Inventory Queries

Edit

—

o
Update Model

=]

=
G
B
&
8
&

Dashboard

Clier

Filesets

Deployments

Associations

Imaging

Classroom

i0S Inventory

License Management

Software Updates

Boosters

Inventory Queries

ssistants  Window  Help

Software Updates

¥ Requested only | Apple S AlFileset Statuses
Name

tvOSUpdate 18.31
tvOSUpdate 183
tvOSUpdate 18.21
tvOSUpdate 182
tvOSUpdate 181
macOSUpdate 15.3.2
macOSUpdate 15.31
macOSUpdate 15.3
macOSUpdate 15.2
macOSUpdate 15.1.1
macOSUpdate 151
iPadOSUpdate 18.3.2
iPadOSUpdate 18.31
iPadOSUpdate 18.3
iPadOSUpdate 18.21
iPadOSUpdate 18.2
iPadOSUpdate 1811
iPadOSUpdate 181
iPadOSUpdate 177.2
iPadOSUpdate 1771
iPadOSUpdate 15.8.3

Window Help

Software Updates

@ Requested only | Windows Al Fileset Status

Name v
Windows Malicious Software Removal Tool x64 - v5.132 (KB890830)

Update for Windows Security platform - KB5007651 (Version 10.0.27703.1006)

Security Intelligence Update for Microsoft Defender Antivirus - KB2267602

Security Intelligence Update for Microsoft Defender Antivirus - KB2267602 (Ver.
e Upd:

niconductor Corp. - MTD - 4/20/2018 12:00:00 AM - 10.0.

Security Intellige: e for Microsoft Defender Antiviru: 2267602

Realtek S 9.21304
Microsoft .NET Framework 4.8:1 for Windows 11 for 64 (KB5011048)
Lenovo Ltd. - Firmware - 1.0.0.75

Lenovo - System - 16716.42
Intel Corporation - Display - 2/28/2018 12:00:00 AM
INTEL - System - 7/12/2016 12:00:00 AM - 1011.33
Intel - System - 4/12/2017 12:00:00 AM - 14.28.47.630

Hewlett-Packard - Other hardware, Printer - Null Print - HP Officejet Pro 8620
Broadcom Inc. - System - 9.8.28.0

Broadcom Inc. - System - 9.8181

Broadcom Inc. - Display - 917.9.4
2025-01 Cumulative Update Preview for .NET Framework 3.5, 4.8 and 4.8 for
2025-01 Cumulative Update Preview for .NET Framework 3.5 and 4.81 for Wind.
2024-10 Update for Windows 11 for x stems (KB5001716)
2023-10 Update for Windows 11 for x ised Systems (KB4023057)

2023-10 Cumulative Update for Windows 11 for x64-based Systems (KB5031358)

2023-10 Cumulative Update for .NET Framework 3.5, 4.8 and 4.8 for Window:

S AllPlatforms  ©

All Categories

Size

Category
Update Rolluj
Definition Updates
Definition Updates
Definition Updates
Definition Updates
Drivers
Feature Packs
Drivers
Drivers
Drivers
Drivers
Drivers
Drivers
Drivers
Drivers
Drivers
Updat
Updates
Updat

ical Updates
Security Updates

Updates

Association Filter

Critical
No
No

8 Association Filter

KB Article
890830
5007651
2267602
2267602
2267602

5011048

5050593
5050578
5001716

4023057
5031358

5031225

Release Date
3/10/2025 8:00 PM
1/26/2025 7:00 PM
115/

12/10/2024 7:00 PM
1 7:00 PM
3/10/2025 8:00 PM
2/9/2025 7:00 PM
1/26/2025 7:00 PM
12/10/2024 7:00 PM
11/18/2024 7:00 PM
11/3/2024 7:00 PM
3/10/2(
2/9/2025 7:00 PM

25 8:00 PM

1/26/2025 7:00 PM
1/5/2025 7:00 PM
2/10/2024 7:00 PM
11/18/2024 7:00 PM
11/3/2024 7:00 PM
11/18/2024 7:00 PM
10/27/2024 8:00 PM
12/10/2024 7:00 PM

Latest Device Req..

3/16/2025 7:10 PM
3/16/2025 7:10 PM
3/16/2025 7:10 PM
3/16/2025 7:10 PM
3/16/2025 7:10 PM
25 7:10 PM

25 7:10 PM
3/16/2025 7:10 PM
3/16/2025 7:10 PM
3/16/2025 7:10 PM
3/16/2025 7:10 PM
3/16/2025 7:10 PM
3/16/2025 7:10 PM
3/16/2025 7:10 PM
3/16/2025 7:10 PM
3/16/2025 7:10 PM
3/16/2025 7:10 PM
3/16/2025 7:10 PM
3/16/2025 7:10 PM
16/2025 7:10 PM
3/16/2025 7:10 PM

Critical

No
No
No
No
B No
18 MB No
677 MB No
47MB No
640.7 kB No
2338 MB No
54kB No
15MB No
215MB
63.4kB
627 kB
283 MB
75.4 MB
723 MB
833.9kB
32MB
122 GB
65.4 MB

Software Updates: 21
Update ID Installed
gdm-tv
gdmf-tvOSUpdatel.

pdatel...
gdmf-tvOSUpdateT...
gdmf-tvOSUpdatel.
gdmf-tvOSUpdate18.1
gdmf-macOSUpdat.
gdmf-macOSUj
gdmf-macOSUpdat.
gdmf-macOSUpdat...
gdmf-macOSUpdat.
gdmf-macOSUpdat.
gdmf-iPadoSUpdat.
gdmf-iPadOSUpdat.
gdmf-iPadoSUpdat...
gdmf-iPadOSUpdat.
gdmf-iPadOSUpdat...
gdmf-iPadOSUpdat.
gdmf-iPadOSUpdat...
gdmf-iPadOSUpdat.

gdmf-iPadOSUpdat.

Software Updates: 22
Release Date Latest Device Req...
/2025 12:00 AM  3/14/2025 8:54 AM
2025 12:00 AM  3/14/2025 8:54 AM

3/15/2025 11:15 PM
2512:00 AM  3/14/2025 8:54 AM
2/17/2025 12:00 AM

0 AM

7/2025 5:00 PM
0/2018 12:

10/20/2(

5/15/21

2025 11:15 PM
0 AM 10:38 AM
12:00 AM  3/15/2025 11:15 PM

3/1/202012:00 AM  3/15/2025 11:15 PM

/2018 12:00 AM  3/15/2025 11:15 PM
2025 11:15 PM
2025 11:15 PM

5/2025 11:15 PM
8:54 AM

3/14/2025 8:54 AM
3/15/2025 11:15 PM
2/17/2025 10:21 AM
2/17/2025 10:38 AM
2/17/2025 10:38 AM
2023 3:00 AM  2/17/2025 10:38 AM

10/10/2023 3:00 AM  2/17/2025 10:38 AM

Refresh Tab

Update ID

a32cald0-ddd
eb877ba3-ef7d-44.
cc78b164-10e3-4:
4ab932¢6-€16b-48...
b783605-7445-
af1d73cc-85b7-
1f591620-6056-:
7c98059¢-171b-
20737c52-d637-4c.
Odac-40.
2226903b-7e47-de.
e47c958d-abea-4:
66575¢08-99ca-45.

2210fc49-6792-417.
€57b968b-7b97-4a.
d988110-c66f-418.
dof3;
Od7acca7-4127-

And in our environment it is a lot of patches indeed, since it is the first time we are setting up the mechanism. But don't worry, it is
now easy to create everything at once, and there are several filters to help you. Examples:

® Requested Only filter is used to only show patches requested by devices in your environment...you'll likely always have this
turned on
e Platform filter can be used to toggle between Apple and Windows patch views
e Fileset Status Filter: "No Fileset"...we can use this filter to ONLY show us patches we haven't "created" yet...we'll likely use
this one all the time in our workflow
® (Categories can be used to narrow down to Critical, Security or other patch categories

Let's assume for now though that "we want to patch everything".

Patch Creation (Alpha)

Because we always start with our Alpha group, that is the Fileset group location we'll use every Monday (and any other time we create
new patch Filesets). Creating the filesets couldn't be simpler...we'll just select them all, right-click, choose create, and then choose
the destination (our Alpha Fileset group)


https://kb.filewave.com/uploads/images/gallery/2025-03/BRjalw3KnDmZxVTL-image.png
https://kb.filewave.com/uploads/images/gallery/2025-03/YUyzC9n8xklnW8RL-image.png

o Note that we put ALL patches for all platforms in the same fileset group...that is on purpose. FileWave 16+ allows you to do
this, and simply "ignore" any patches that aren't for the devices you have assigned them to.

As soon as we update model, all "Alpha" patches for all "Alpha" devices will be assigned, and start to deploy...it's as easy as that.

Patch Assignment (Beta and Production)

Because we always start with our Alpha group, we never have to "create" patches for the Beta testers or Production users. On our
"Wednesday" Beta testing the ONLY thing we have to do is MOVE the filesets from our Alpha Fileset Group to our Beta Fileset Group.
And the following Monday we'll move patches from Beta to Production. Job well done.

Further Notes

Above, we mentioned that it didn't matter that we put all patches for all OSes in the same fileset group, and here is why:

Last Connected: 3/16/2025 9:01 PM
From: 192.168.86.240
Free Space: 14 TB
indows 10.0
65
0.0 (Rev. 821fb9)
Enrollment Type: Enrollment via fwcld

Missing Updates: |

Export Current Tab Client Monitor Get Client Log
Filesets Status Device Details Users Policies  Software Updates Position Map
Show Al 2 @ Ignore non applicable Software Update Filesets 11 Fileset(s)

Fileset ~  Fileset ID Revision Revision ID Status Identifier Activation State Date/Time Directory

Software Update - 2025-01 Cumulative Update Previ... 32937 <default> (Initial Revision) 32937 Installed Success

Software Update - Intel - - v. <default> (Initial Revi Installed Suc
Software Update - INTEL auit> (Initial Revi Installed S
Software Update - Intel Corporation - Display - 2/28/... <default> (Initial Revi

Software Update - Lenovo - - > (Initial Revi

Software Update - Lenovo Ltd. - Firmware - 1.0.0.75 < > (Initial Revision)

Software Update - Realtek Semiconductor Corp. - MT. <default> (Initial Revision)

Software Update - Security Intelligence Update for Mi. <default> (Initial Revision)

Software Update - Security Intelligence Update for Mi. <default> (Initial Revision) Installed Succese

Software Update - Windows Malicious Software Rem... 32921 <default> (Initial Revision) Installed Suct

Reinstall Selected Filesets

In version 16+ of FileWave, the system knows the non-applicable patches don't apply, and they are automatically also filtered out of
the Ul in the Client Info view shown above. This means we don't have to create tons of groups for this, we can just keep it streamlined
and simple. In the example provided you can see we don't see any of the Apple patches in the view, and we don't see anything
Microsoft that doesn't apply either...the only thing we see is success (or failure) of the patches needed for this device.

And, when evaluating how your patching is going, remember there is a new view for any individual software update where you can see
assignment (and results) from all devices.


https://kb.filewave.com/uploads/images/gallery/2025-03/ihk1qkBodpWLxYhE-image.png

File Edit View Server Assistants Window Help

=
&

Update Model ~ Create Fileset Refresh Tab

(33 Dashboard Software Updates Update for Windows Security platform - KB5007651 (Version 10.0.27703.1006) X

=8 Update for Windows Security platform - KB5007651 (Version 10.0.27703.100...  @usns2 @ nswsiec

Release Date: Jan 08, 2025 00:00 Platform: Windows Critical: No Category: Definition Updates KB-Article:
Update ID:  a32cald0-ddd4-486b-b708-d941db4fbdaa Version:  N/A Size: 18 MB Reboot:  No

Clients
Filesets
Deployments

Associations

o All Statuses All Fileset Statuses T Clients: 4
88, Imaging

Device Name Update Status 5 s Status Date Rollout Plan Last Report Date
3/14/2025 8:54 AM
% 10S Inventory 510:38 AM

Classroom

= Unassigned 2/17/2025 10:21 AM
[Fg License Management 1

pn-win11 @ Installed Unassigned 2/17/2025 10:42 AM

o Software Updates

B Boosters

[2] Inventory Queries

Windows BIOS/UEFI Firmware and Driver Updates

The latest Windows Software Update filesets now include BIOS/UEFI firmware updates from certain OEM vendors (e.g., Dell, HP,
Lenovo). While these updates may appear alongside OS patches, please be careful when deploying.

The latest Windows Software Update filesets now also includes third-party driver updates, such as those for monitors, audio devices,
and peripheral hardware. While these updates can improve compatibility and stability, they often have the following impact:

® Many of these drivers require a reboot to complete installation.
® Automatic deployment may result in unexpected restarts, potentially disrupting end-user workflows.

To maintain a smooth user experience and prevent unplanned reboots, you may want to deploy driver updates via Self-Service Kiosk
instead of automatic enforcement.

Related Content

® OS Software Updates



https://kb.filewave.com/uploads/images/gallery/2025-03/E59Lde4hNKip3zGA-image.png
https://kb.filewave.com/books/evaluation-guide/page/os-software-updates

