
Script Best Practices
Description

Tips and tricks for running Filesets with scripts

Don't put passwords in scripts
Keep Requirements Scripts Small
Leverage Dependancies and Scripts
Log Script Output to the Client Log
Testing Scripts

Windows
Example

macOS
Other Script Recipes

Don't put passwords in scripts

If a script needs a username or password, we don't want those to be stored in the script locally on workstations for security reasons.

Example: password in command

somecommand -u username -p "PASSSWORD_HERE"

So, we can replace those values with variables from the fileset

Windows: PowerShell

somecommand -u $args[0] -p $args[1]

Windows: All other script types i.e. bat, python, perl

somecommand -u %1 -p %2

macOS / Linux

somecommand -u $1 -p $2

These will be pulled from the executable arguments

https://kb.filewave.com/display/KB/Script+Best+Practices#ScriptBestPractices-Don'tputpasswordsinscripts
https://kb.filewave.com/display/KB/Script+Best+Practices#ScriptBestPractices-KeepRequirementsScriptsSmall
https://kb.filewave.com/display/KB/Script+Best+Practices#ScriptBestPractices-LeverageDependanciesandScripts
https://kb.filewave.com/display/KB/Script+Best+Practices#ScriptBestPractices-LogScriptOutputtotheClientLog
https://kb.filewave.com/display/KB/Script+Best+Practices#ScriptBestPractices-TestingScripts
https://kb.filewave.com/display/KB/Script+Best+Practices#ScriptBestPractices-Windows
https://kb.filewave.com/display/KB/Script+Best+Practices#ScriptBestPractices-Example
https://kb.filewave.com/display/KB/Script+Best+Practices#ScriptBestPractices-macOS
https://kb.filewave.com/display/KB/Script+Best+Practices#ScriptBestPractices-OtherScriptRecipes

Keep Requirements Scripts Small

Requirements scripts are pulled from a fileset and sent before the remainder of the fileset.

It behaves this way because if a requirements script fails, there is no point in downloading and installing the remainder of the fileset.

Where possible, avoid piping commands. This increases overhead on the scripts. If pipes are required, try to reduce the quantity of pipes. If nothing else,
this makes the scripts easier to read.

$ time system_profiler SPHardwareDataType | grep "Model Identifier" | awk '{print $NF}'
MacBookPro11,4

$ system_profiler SPHardwareDataType | awk '/Model Identifier/ {print $NF}'
MacBookPro11,4

And other commands may achieve the same result more efficiently without the need to pipe.

A fileset whose requirements have failed will not even show up in the kiosk.

$ time system_profiler SPHardwareDataType | grep "Model Identifier" | awk '{print $NF}'
MacBookPro11,4

real 0m0.192s
user 0m0.071s
sys 0m0.049s

$ time sysctl -n hw.model
MacBookPro11,4

real 0m0.004s
user 0m0.001s
sys 0m0.002s

Consider this for all scripts beyond just requirement scripts.

Leverage Dependancies and Scripts

If there is a script that several filesets will need, don't paste the same script into each one. Create an empty fileset with that script, and make the other
filesets dependent upon it.

Log Script Output to the Client Log

Have a script that needs to write details steps to a log?

Want a quick status of the script.

Have a script write to the client log.

macOS / Linux

#!/bin/bash
exec 1>>/var/log/fwcld.log
exec 2>>/var/log/fwcld.log

... rest of script

You can then use Client Monitor, and pull and view the log as things are happening

Testing Scripts

Scripts run by FileWave are run by root or System. As such, scripts should be tested using the same user context to prevent erroneous results. Many
commands will yield the same result regardless, but this cannot be relied upon.

Windows

E.g. Run the following on a Windows 10 Professional system locally through Powershell as either user or 'Run As Admin' will see the following result:

 (Get-ItemProperty "HKLM:\SOFTWARE\Microsoft\Windows NT\CurrentVersion").EditionId
Professional

However, as a Custom Field running the same script, the result is surprisingly different:

 (Get-ItemProperty "HKLM:\SOFTWARE\Microsoft\Windows NT\CurrentVersion").EditionId
Enterprise

This is because Windows is providing a different answer based upon either the user running the script or may provide different responses based on 32-bit
or 64-bit.

1.
2.

Take a look at for details about running scripts as System. Note, that by Getting a CMD prompt as SYSTEM in Windows Vista and Windows Server 2008
default, this will start an executable as 64-bit, for native 64-bit OS. However, the above example is because the FileWave fwcld process is calling the 32-
bit version of PowerShell.

To mimic this experience, consider the guide to starting the CMD. When launching an executable, like PowerShell, the 32-bit version would need to be
referenced. For example:

>PSEXEC -i -s -d C:\Windows\SysWOW64\windowsPowerShell\v1.0\powershell.exe

For CMD, the equivalent would be:

>PSEXEC -i -s -d %windir%\SysWoW64\cmd.exe

Similarly, when attempting to run some commands, it may be necessary to ensure Windows is using the correct version of a binary with the ' ' sysnative
redirect. An example would be bitlocker's 'manage-bde.exe'. To use this in a Fileset, try the following:

C:\Windows\sysnative\manage-bde.exe -status

If you have a requirement to run a particular command through the 64 bit version of Powershell this can be achieved as follows:

If ([IntPtr]::Size * 8 -ne 64)
{
 C:\Windows\SysNative\WindowsPowerShell\v1.0\PowerShell.exe -File $MyInvocation.MyCommand.Path
}
Else
{
 # Add code here
}

Example

Create a new admin account

Two Fileset Launch Arguments would be supplied. To add the user 'rstephens' with the password 'filewave'

rstephens
filewave

Parameters may be supplied, that can then be added to the execution of Powershell from within the script:

Param (
 [string]$MyUsername = $args[0],
 [string]$MyPassword = $args[1]
)

If ([IntPtr]::Size * 8 -ne 64)
{
 C:\Windows\SysNative\WindowsPowerShell\v1.0\PowerShell.exe -File $MyInvocation.MyCommand.Path -MyUsername
$MyUsername -MyPassword $MyPassword
}
Else
{
 (New-LocalUser -AccountNeverExpires:$true -Password (ConvertTo-SecureString -AsPlainText -Force
$MyPassword) -Name $MyUsername | Add-LocalGroupMember -Group administrators)
}

PsTools

This relies on downloading and installing, onto the test machine, .PsTools

https://blogs.technet.microsoft.com/askds/2008/10/22/getting-a-cmd-prompt-as-system-in-windows-vista-and-windows-server-2008/
https://docs.microsoft.com/en-us/windows/desktop/winprog64/file-system-redirector
https://docs.microsoft.com/en-us/sysinternals/downloads/pstools

macOS

On macOS, running commands as sudo is not necessarily the same as actually becoming root.

E.g. Run the following commands to evaluate the local variable $HOME, once using sudo and once as root.

$ whoami
auser
$ sudo echo $HOME
/Users/auser
$ sudo su -
$ whoami
root
$ echo $HOME
/var/root

It is common to see plist files edited with the 'defaults' command. However this command is unique when it comes to ownership and permissions of
files. The 'defaults' command will both take ownership and change permissions of files when used to write to plist files:

$ whoami
root
$ ls -al /tmp/example_plist.plist
-rw-r--r-- 1 rstephens staff 66 Feb 28 10:03 /tmp/example_plist.plist
$ defaults write /tmp/example_plist Label example_plist
$ ls -al /tmp/example_plist.plist
-rw------- 1 root wheel 66 Feb 28 10:05 /tmp/example_plist.plist

As such, ensure to add a repair to scripts to reset permissions and ownership after the command has been used or consider using the following command
instead:

/usr/libexec/PlistBuddy

Other Script Recipes

 DeepFreeze (Knowledge Base)

 Execute as Console User (Knowledge Base)

 Firmware (macOS 10.6 - macOS 10.12) (Knowledge Base)

 Full macOS Model name to Inventory (Knowledge Base)

 Hide local admins (Knowledge Base)

 Remotely Enable Screen Sharing for a user (Knowledge Base)

 Remove Casper JSS Client Components (Knowledge Base)

 Remove mobileconfig signature (Knowledge Base)

 Script Best Practices (Knowledge Base)

 User Icon (Knowledge Base)

 Windows Firewall rules (Knowledge Base)

https://kb.filewave.com/display/KB/DeepFreeze
https://kb.filewave.com/display/KB/Execute+as+Console+User
https://kb.filewave.com/pages/viewpage.action?pageId=3507251
https://kb.filewave.com/display/KB/Full+macOS+Model+name+to+Inventory
https://kb.filewave.com/display/KB/Hide+local+admins
https://kb.filewave.com/display/KB/Remotely+Enable+Screen+Sharing+for+a+user
https://kb.filewave.com/display/KB/Remove+Casper+JSS+Client+Components
https://kb.filewave.com/display/KB/Remove+mobileconfig+signature
https://kb.filewave.com/display/KB/User+Icon
https://kb.filewave.com/display/KB/Windows+Firewall+rules

	Script Best Practices

